标签:
Combination Sum
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is: [7]
[2, 2, 3]
思路:需要回溯的思想。对数组里面的每个数,用递归的方式叠加,每次递归将和sum与target作比较,若相等则加入结果list,sum>target则舍弃,并返回false,若sum<target,则继续进行递归。第一种sum=target的情况下,在加入结果list后,要将当前一种结果最后加入的元素remove,并继续对后面的元素进行递归;在第二种sum>target的情况下,则需要将当前结果的最后加入的两个元素remove,并继续对后面的元素进行递归。第三种情况sum<target,无需删除直接递归。
注意元素可以重复,所以下一次递归是从当前递归元素开始。
public class S039 { //backtracking--回溯算法 public List<List<Integer>> combinationSum(int[] candidates, int target) { List<List<Integer>> result = new ArrayList<List<Integer>>(); List<Integer> temp = new ArrayList<Integer>(); Arrays.sort(candidates);//很关键的一步 findConbination(result,temp,0,0,target,candidates); return result; } public boolean findConbination(List<List<Integer>> result,List<Integer> temp,int sum,int level,int target,int[] candidates){ if(sum == target){ result.add(new ArrayList<>(temp)); //从内存复制,防止后面的改变对其发生影响 return true; }else if(sum>target){ return false; }else{ for(int i = level;i<candidates.length;i++){//思考level参数的作用 temp.add(candidates[i]); // sum += candidates[i];思考这一行注释掉并把sum的增加加在下一行参数里面的原因 if(!findConbination(result,temp,sum+candidates[i],i,target,candidates)){//i表示下一次递归从当前递归的位置开始 i = candidates.length; } temp.remove(temp.size()-1); } return true; } } }
Combination Sum II
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
For example, given candidate set 10,1,2,7,6,1,5
and target 8
,
A solution set is: [1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
思路:与前一题的不同之处在于结果要求同一位置的元素只能出现一次,但是值相同在数组中位置不同的元素可以同时出现。与前一题的不同就是下一次递归都是从当前递归的下一个元素开始。另外测试集不相同,前一题的测试集中不会出现同一数组中有相同的元素,所以不用额外去重。这一题同一数组会出现相同元素,所以得在元素向前移的时候跳过相同的元素来进行去重。
public class S040 { public List<List<Integer>> combinationSum2(int[] candidates, int target) { Arrays.sort(candidates); List<List<Integer>> rets = new ArrayList<List<Integer>>(); List<Integer> ret = new ArrayList<Integer>(); find(candidates,0,0,target,rets,ret); return rets; } public static boolean find(int[] candidates,int sum,int level,int target,List<List<Integer>> rets,List<Integer> ret){ if(sum == target){ rets.add(new ArrayList<>(ret)); return true; }else if(sum > target){ return false; }else{ for(int i = level;i<candidates.length;i++){ ret.add(candidates[i]); if(!find(candidates,sum+candidates[i],i+1,target,rets,ret)){//i+1表明下一次递归从当前递归的下一位元素开始 i = candidates.length; } //去重 while(i<candidates.length-1&&ret.get(ret.size()-1) == candidates[i+1]){ i++; } ret.remove(ret.size()-1); } return true; } } }
Combination Sum III
Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Ensure that numbers within the set are sorted in ascending order.
Example 1:
Input: k = 3, n = 7
Output:
[[1,2,4]]
Example 2:
Input: k = 3, n = 9
Output:
[[1,2,6], [1,3,5], [2,3,4]]
思路:这一题还是参照了前两题,相当于把前两题中的candidates数组变为nums={1,2,3,4,5,6,7,8,9},然后再在每一次比较结果时加上结果list大小的比较,当前list的大小不超过k。
也不用额外去重。
public class S216 { public List<List<Integer>> combinationSum3(int k, int n) { List<List<Integer>> result = new ArrayList<List<Integer>>(); List<Integer> temp = new ArrayList<Integer>(); if(n<k*(k+1)/2||n>45||k>9||k<1){ return result; } int[] nums = {1,2,3,4,5,6,7,8,9}; find(nums,k,n,0,0,result,temp); return result; } public static boolean find(int[] nums,int k, int n, int sum,int level, List<List<Integer>> result,List<Integer> temp){ if(temp.size()>k||sum>n){ return false; }else if(sum == n&&temp.size() == k){ result.add(new ArrayList<>(temp)); return true; }else{ for(int i = level;i<nums.length;i++){ temp.add(nums[i]); if(!find(nums,k,n,sum+nums[i],i+1,result,temp)){ i = nums.length; } temp.remove(temp.size()-1); } return true; } } }
Leetcode 39 40 216 Combination Sum I II III
标签:
原文地址:http://www.cnblogs.com/fisherinbox/p/5361173.html