标签:
资源调度
说明:
Application的调度算法有两种,分别为spreadOutApps和非spreadOutApps
spreadOutApps
非spreadOutApps
Schdule方法源码分析
1 | /** |
2 | * Schedule the currently available resources among waiting apps. This method will be called |
3 | * every time a new app joins or resource availability changes. |
4 | */ |
5 | private def schedule() { |
6 | // 判断master状态,不为ALIVE时直接返回 |
7 | if (state != RecoveryState.ALIVE) { return } |
8 | |
9 | // First schedule drivers, they take strict precedence over applications |
10 | // Randomization helps balance drivers |
11 | // 获取状态为ALIVE的worker,并且随机打乱 |
12 | val shuffledAliveWorkers = Random.shuffle(workers.toSeq.filter(_.state == WorkerState.ALIVE)) |
13 | // 可用worker数量 |
14 | val numWorkersAlive = shuffledAliveWorkers.size |
15 | var curPos = 0 |
16 | |
17 | // diriver调度过程(yarn-client模式下) |
18 | for (driver <- waitingDrivers.toList) { // iterate over a copy of waitingDrivers |
19 | // We assign workers to each waiting driver in a round-robin fashion. For each driver, we |
20 | // start from the last worker that was assigned a driver, and continue onwards until we have |
21 | // explored all alive workers. |
22 | var launched = false |
23 | var numWorkersVisited = 0 |
24 | // 判读还有可用的worker且Driver还未启动 |
25 | while (numWorkersVisited < numWorkersAlive && !launched) { |
26 | val worker = shuffledAliveWorkers(curPos) |
27 | numWorkersVisited += 1 |
28 | // 判断当前worker空闲内存是否大于等于driver需要的内存,且Worker空闲的core数量大于等于dirver需要的core的数量 |
29 | if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) { |
30 | // 启动driver |
31 | launchDriver(worker, driver) |
32 | waitingDrivers -= driver |
33 | launched = true |
34 | } |
35 | curPos = (curPos + 1) % numWorkersAlive |
36 | } |
37 | } |
38 | |
39 | // Right now this is a very simple FIFO scheduler. We keep trying to fit in the first app |
40 | // in the queue, then the second app, etc. |
41 | // spreadOutApps调度方式 |
42 | if (spreadOutApps) { |
43 | // Try to spread out each app among all the nodes, until it has all its cores |
44 | // 遍历需要调度的app(Application),且该app中的core还需要调度 |
45 | for (app <- waitingApps if app.coresLeft > 0) { |
46 | val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE) |
47 | .filter(canUse(app, _)).sortBy(_.coresFree).reverse |
48 | // 可用worker的数量 |
49 | val numUsable = usableWorkers.length |
50 | // 存放app 需要分配core的结果 |
51 | val assigned = new Array[Int](numUsable) // Number of cores to give on each node |
52 | // 获取Application剩余需要分配的cpu数量与worker总共可用cpu数量中的最小值 |
53 | var toAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum) |
54 | var pos = 0 |
55 | while (toAssign > 0) { |
56 | // 如果worker空闲的cpu数量大于已经分配出去的cpu数量,那么woker还可继续分配cpu |
57 | if (usableWorkers(pos).coresFree - assigned(pos) > 0) { |
58 | // 还需分配core的总数量减1 |
59 | toAssign -= 1 |
60 | // 在已分配app core结果集中加1 |
61 | assigned(pos) += 1 |
62 | } |
63 | pos = (pos + 1) % numUsable |
64 | } |
65 | // Now that we‘ve decided how many cores to give on each node, let‘s actually give them |
66 | for (pos <- 0 until numUsable) { |
67 | if (assigned(pos) > 0) { |
68 | // 根据WorkerInfo和所需的core构建ExecutorDesc |
69 | val exec = app.addExecutor(usableWorkers(pos), assigned(pos)) |
70 | // 启动Executor |
71 | launchExecutor(usableWorkers(pos), exec) |
72 | app.state = ApplicationState.RUNNING |
73 | } |
74 | } |
75 | } |
76 | } |
77 | // 非spreadOutApps调度方式 |
78 | else { |
79 | // Pack each app into as few nodes as possible until we‘ve assigned all its cores |
80 | // 过滤出可用的worker |
81 | for (worker <- workers if worker.coresFree > 0 && worker.state == WorkerState.ALIVE) { |
82 | // 获取需要分配core的app |
83 | for (app <- waitingApps if app.coresLeft > 0) { |
84 | // 判读app是否可以使用该worker |
85 | if (canUse(app, worker)) { |
86 | // 取worker空闲core与app需分配core中的最小值 |
87 | val coresToUse = math.min(worker.coresFree, app.coresLeft) |
88 | if (coresToUse > 0) { |
89 | // 根据WorkerInfo和所需的core构建ExecutorDesc |
90 | val exec = app.addExecutor(worker, coresToUse) |
91 | // 启动Executor |
92 | launchExecutor(worker, exec) |
93 | app.state = ApplicationState.RUNNING |
94 | } |
95 | } |
96 | } |
97 | } |
98 | } |
99 | } |
标签:
原文地址:http://www.cnblogs.com/jianyuan/p/Spark系列之Master资源调度.html