标签:
There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
题意:寻找两个有序数组的中位数,要求复杂度为O(log
(m+n)).
思路:问题本质事实上就是求两个有序数组的第Kth的数。那么我们能够这样考虑,分别求出a,b两个数组中第k/2th的数。这两个数有三种情况
当a[k/2]<b[k/2]时,那么原kth数肯定不在a[k/2]之前的数内,然后抛弃a[k/2]之前的全部数,再在剩余的数里求k-(k/2)th数,其余两种情况同理。递归二分,所以复杂度降到对数级别
double find_kth(int a[],int m,int b[],int n,int k){ if(m>n) return find_kth(b,n,a,m,k); if(m==0) return b[k-1]; if(k==1) return min(a[0],b[0]); int pa=min(k/2,m),pb=k-pa; if(a[pa-1]<b[pb-1]) return find_kth(a+pa,m-pa,b,n,k-pa); else if(a[pa-1]>b[pb-1]) return find_kth(a,m,b+pb,n-pb,k-pb); else return a[pa-1]; } class Solution { public: double findMedianSortedArrays(int A[], int m, int B[], int n) { int sum=m+n; if(sum%2){ return find_kth(A,m,B,n,sum/2+1); } else return (find_kth(A,m,B,n,sum/2)+find_kth(A,m,B,n,sum/2+1))/2; } };
标签:
原文地址:http://www.cnblogs.com/lcchuguo/p/5367619.html