码迷,mamicode.com
首页 > 其他好文 > 详细

ScalersTalk成长会机器学习小组第7周学习笔记

时间:2016-04-08 15:09:14      阅读:248      评论:0      收藏:0      [点我收藏+]

标签:

ScalersTalk成长会机器学习小组第7周学习笔记

本周主要内容
- 优化目标
- 最大间隔
- 最大间隔分类的数学背景
- 核函数I
- 核函数II
- 使用支持向量机

本周主要知识点:

一、优化目标
- 从另一个角度看logistic回归
hθ(x)=1(1+e?θTx)技术分享
if y=1 , 我们需要hθ(x)1,θTx>>0
if y=0 , 我们需要hθ(x)0,θTx<<0
- 从另一个角度看logistic回归
- 损失函数:?(yloghθ(x))+(1?y)log(1?hθ(x))
=?ylog11+e?θTx+(1?y)log(1?11+e?θTx)
技术分享
- 支持向量机和logistic回归损失函数:
logistic回归:

minθ1m[i=1my(i)(?loghθ(x(i)))+(1?y(i))((?log(1?hθ(x(i))))]+λ2mi=1nθ2j

支持向量机:
技术分享

minθCi=1m[y(i)cost1(θTx(i))+(1?y(i))cost0(θTx(i))]+12i=1nθ2j

二、最大间隔的含义
- 优化求解目标函数:
minθCi=1m[y(i)cost1(θTx(i))+(1?y(i))cost0(θTx(i))]+12i=1nθ2j

技术分享

if y=1 , 我们需要θTx1,0
if y=0 , 我们需要θTx?1,0
- 支持向量机的决策边界:
当C为一个很大的值:
技术分享
- 支持向量机:线性可分场合
技术分享
- 支持向量机:最大间隔在存在异常值场合
技术分享
四、核函数I
- 非线性决策边界:
技术分享
- 模型预测:
对样本进行预测,具有下面形式:
if θ0+θ1x1+θ2x2+θ3x1x2+θ4x21+θ5x22+...0, then y=1, 预测为正类

hθ(x)={1,0,if θ0+θ1x1+θ2x2+...0

θ0+θ1f1+θ2f2+θ3f3+...

f1=x1,f2=x2,f4=x1x2,f4=x21,f5=x22,...

这里由于是多项式展开形成的特征,一下子计算量变得不可估计,看看如何通过核函数来降维。
- 核函数:
技术分享
给定x场合,计算一个新的特征,这个特征依赖于其临近的标记点:l(1),l(2),l(3)
给定x场合:
f1=similarity(x,l(1))=exp(?||x?l(1)||22σ2)

f2=similarity(x,l(2))=exp(?||x?l(2)||22σ2)

f3=similarity(x,l(3))=exp(?||x?l(3)||22σ2)

K=(x,l(i))

- 核函数和相似度函数:
f1=similarity(x,l(1))=exp(?||x?l(1)||22σ2)

在给定x临近l(1)时:
f1exp(?022σ2)1

在给定x远离l(1)时:
f1exp(?(large number)22σ2)0

- 核函数例子:
l(1)=(35),f1=exp(?||x?l(1)||22σ2)

技术分享

技术分享
f11,f20,f30
对于靠近l(1)的点计算等式:

θ0+θ1f1+θ2f2+θ3f3=?0.5+1=0.5>0
预测:y=1
对于远离l(1)l(2)l(3)的点计算等式:
θ0+θ1f1+θ2f2+θ3f3=?0.5+0=?0.5<0
预测:y=0
五、核函数II
- 如何选择标记点:
技术分享

  • SVM的核函数:
    技术分享
  • SVM的核函数:
    技术分享
    大家还记得线性不可分时的SVM那张图,特征的维数灾难通过核函数解决了。
    公式最右侧的12jmθ2j被替换成立θTMθ,这样是为了适应超大的训练集。
  • SVM的参数选择:
    技术分享
    六、使用SVM
  • 使用软件包来求解参数θ
    技术分享
  • 核函数的相似度函数如何写:
    技术分享
    记得在使用高斯核函数时不要忘记对特征做归一化。
  • 其他的核函数选择:
    并不是所有的核函数都合法的,必须要满足Mercer定理。
  • 多项式核:
    衡量x与l的相似度:
    (xTl)2
    (xTl)3
    (xTl+1)3
    通用的公式:
    (xTl+Con)D
    如果它们是相似的,那么內积就会很大。
  • String kernel:
    如果输入时文本字符
    用来做分类
    Chi-squared kernel
    Histogram intersection kernel(直方图交叉核)
  • SVM的多分类:
    Many packages have built in multi-class classification packages
    Otherwise use one-vs all method
    Not a big issue
  • SVM和Logistic 回归的比较:
    技术分享
    六、作业
    技术分享

技术分享
技术分享
技术分享
技术分享
技术分享

function sim = gaussianKernel(x1, x2, sigma)
%RBFKERNEL returns a radial basis function kernel between x1 and x2
%   sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2
%   and returns the value in sim

% Ensure that x1 and x2 are column vectors
x1 = x1(:); x2 = x2(:);

% You need to return the following variables correctly.
sim = 0;

% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the similarity between x1
%               and x2 computed using a Gaussian kernel with bandwidth
%               sigma
%
%
sim = exp(-(x1 - x2)‘ * (x1 - x2) / (2*(sigma^2)));

% =============================================================

end

dataset3Params.m:

function [C, sigma] = dataset3Params(X, y, Xval, yval)
%EX6PARAMS returns your choice of C and sigma for Part 3 of the exercise
%where you select the optimal (C, sigma) learning parameters to use for SVM
%with RBF kernel
%   [C, sigma] = EX6PARAMS(X, y, Xval, yval) returns your choice of C and 
%   sigma. You should complete this function to return the optimal C and 
%   sigma based on a cross-validation set.
%

% You need to return the following variables correctly.
C = 1;
sigma = 0.3;

% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the optimal C and sigma
%               learning parameters found using the cross validation set.
%               You can use svmPredict to predict the labels on the cross
%               validation set. For example, 
%                   predictions = svmPredict(model, Xval);
%               will return the predictions on the cross validation set.
%
%  Note: You can compute the prediction error using 
%        mean(double(predictions ~= yval))
%
smallest_error=1000000;

c_list = [0.01; 0.03; 0.1; 0.3; 1; 3; 10; 30];

s_list = c_list;

  for c = 1:length(c_list)

    for s = 1:length(s_list)

        model  = svmTrain(X, y, c_list(c), @(x1, x2) gaussianKernel(x1,x2,s_list(s)));

        predictions = svmPredict(model, Xval);

        error = mean(double(predictions ~= yval));

        if error < smallest_error

           smallest_error = error;

           C = c_list(c);

           sigma = s_list(s);

        end

        end

    end


% =========================================================================

end

emailFeatures.m:

function x = emailFeatures(word_indices)
%EMAILFEATURES takes in a word_indices vector and produces a feature vector
%from the word indices
%   x = EMAILFEATURES(word_indices) takes in a word_indices vector and 
%   produces a feature vector from the word indices. 

% Total number of words in the dictionary
n = 1899;

% You need to return the following variables correctly.
x = zeros(n, 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return a feature vector for the
%               given email (word_indices). To help make it easier to 
%               process the emails, we have have already pre-processed each
%               email and converted each word in the email into an index in
%               a fixed dictionary (of 1899 words). The variable
%               word_indices contains the list of indices of the words
%               which occur in one email.
% 
%               Concretely, if an email has the text:
%
%                  The quick brown fox jumped over the lazy dog.
%
%               Then, the word_indices vector for this text might look 
%               like:
%               
%                   60  100   33   44   10     53  60  58   5
%
%               where, we have mapped each word onto a number, for example:
%
%                   the   -- 60
%                   quick -- 100
%                   ...
%
%              (note: the above numbers are just an example and are not the
%               actual mappings).
%
%              Your task is take one such word_indices vector and construct
%              a binary feature vector that indicates whether a particular
%              word occurs in the email. That is, x(i) = 1 when word i
%              is present in the email. Concretely, if the word ‘the‘ (say,
%              index 60) appears in the email, then x(60) = 1. The feature
%              vector should look like:
%
%              x = [ 0 0 0 0 1 0 0 0 ... 0 0 0 0 1 ... 0 0 0 1 0 ..];
%
%
for i=1:length(word_indices)

    row = word_indices(i);

    x(row) = 1;

end







% =========================================================================


end

processEmail.m:

   % Look up the word in the dictionary and add to word_indices if
    % found
    % ====================== YOUR CODE HERE ======================
    % Instructions: Fill in this function to add the index of str to
    %               word_indices if it is in the vocabulary. At this point
    %               of the code, you have a stemmed word from the email in
    %               the variable str. You should look up str in the
    %               vocabulary list (vocabList). If a match exists, you
    %               should add the index of the word to the word_indices
    %               vector. Concretely, if str = ‘action‘, then you should
    %               look up the vocabulary list to find where in vocabList
    %               ‘action‘ appears. For example, if vocabList{18} =
    %               ‘action‘, then, you should add 18 to the word_indices 
    %               vector (e.g., word_indices = [word_indices ; 18]; ).
    % 
    % Note: vocabList{idx} returns a the word with index idx in the
    %       vocabulary list.
    % 
    % Note: You can use strcmp(str1, str2) to compare two strings (str1 and
    %       str2). It will return 1 only if the two strings are equivalent.
    %
 for i=1:length(vocabList)

        if(strcmp(str , vocabList(i)))

           word_indices = [word_indices; i];

        end
end

ScalersTalk成长会机器学习小组第7周学习笔记

标签:

原文地址:http://blog.csdn.net/myboyliu2007/article/details/51094945

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!