标签:
preference learning refers to the problem of learning from observations which reveal, either explicitly or implicitly information about the preferences of an individual (e.g., a user of a computer system) or a class of individuals;the acquisition of this kind of information can be supported by methods for preference mining.
Preference learning is about inducing predictive preference models from empirical data.
Special emphasis will be put on learning to rank, which is by now one of the most extensively studied problem tasks in preference learning
terminology
A data object consists of an instance (the input, also called predictive or independent variable in statistics)and an associated class label (the output, also called target or dependent variable in statistics). The former is normally denoted by x, and the corresponding instance space by X , while the output space is denoted by Y.
注意此处的实例instance是一个向量,同时其对应的类标签class label 也是一个向量。区别于在分类问题中我们遇到的类标签是一个变量。
学习排名(learning to rank)是偏好学习(Preference Learning)中最受瞩目的一个主题。简单介绍下几种排名问题:
- πx(i)函数:将实例x的第i个标签映射到排名中的某个位置
- πx:表示了实例x的标签排名
- 下面这个式子表示了x的标签按排名顺序依次排开
一个训练集T包含了一组实例x以及每个x的成对的标签的排名。(yi,yj)表示标签i排在标签j的前面。
application scenario:
一些传统的分类问题和多标签分类问题都可以从标签偏好的角度来分析:
在分类问题中,比如说一篇文章x的标签可取体育,娱乐,健康中的一个,那么如果真实标签是体育,那么可以刻画为一个标签偏好模型:x的标签偏好关系——体育>娱乐,体育>健康。在多标签分类问题类似,只是x可能取的是体育和健康,那么关系是:体育>娱乐,健康>娱乐。
举个例子:对提交的paper进行归类{reject, weak reject, weak accept, and accept}.
这里的标签的个数k=4,被称为多(k>2)分裂排名,常见的k=2是二分裂排名。
实例排名问题就转化为多分裂排名或者二分裂排名。
see Fig. 2 for a formalization of this task
Such a function assigns an abstract degree of utility to each alternative under consideration.Depending on the underlying utility scale, which is typically either numerical or ordinal, the problem becomes one of regression learning or ordered classification.
In the label preferences scenario:
在instance ranking情形下,训练数据的实例的效用值已经给出了。因此这个问题在原则上可以用分类或者回归算法来解决,但是与传统分类不同的是,这个分类的目标是最大化排名性能,因此传统的算法需要做适当的调整。
在 object/label ranking情形下,训练数据通常来源于一种间接的监督(indirect supervision),给定的是效用函数的某些限制(一些比较信息,比如某个object(label)应该比另一个object(label)的效用值高)。因此它的目的是找到一个效用函数,使得它满足这些限制。
The key idea of this approach is to learn a binary preference relation that compares pairs of alternatives (e.g., objects or labels).
Learning ranking functions is to proceed from specific model assumptions, that is, assumptions about the structure of the preference relations.
Assumption Example :the target ranking of a set of objects described in terms of multiple attributes can be represented as a lexicographic order.
这种设想(Assumption )对假设空间(hypothesis space)是一种归纳偏置限制,可以压缩假设空间的数目,比如说特征数目k=2,特征可取值 m=4,则总的样本数据为2^4=16个,因此,排名假设空间是16!个,但是如果按字典顺序排名的话,只有2^4*4!=384个假设,大大简化了模型的求解。但是这种字典顺序的设想在实际应用中是很少使用的,因为个体的特征值彼此之间是有依赖的,比如说如果主食是肉,那么红酒排在饮料前面,如果主食是鱼,那么白酒将会排在红酒前面。
Preference Learning——Introduction
标签:
原文地址:http://blog.csdn.net/zm714981790/article/details/51106302