码迷,mamicode.com
首页 > 其他好文 > 详细

Scalaz(38)- Free :Coproduce-Monadic语句组合

时间:2016-04-12 17:25:04      阅读:132      评论:0      收藏:0      [点我收藏+]

标签:

   很多函数式编程爱好者都把FP称为Monadic Programming,意思是用Monad进行编程。我想FP作为一种比较成熟的编程模式,应该有一套比较规范的操作模式吧。因为Free能把任何F[A]升格成Monad,所以Free的算式(AST)、算法(Interpreter)关注分离(separation of concern)模式应该可以成为一种规范的FP编程模式。我们在前面的几篇讨论中都涉及了一些AST的设计和运算,但都是一些功能单一,离散的例子。如果希望通过Free获取一个完整可用的程序,就必须想办法把离散的Free AST组合成一体运算。我们先从单一的Free AST例子开始:

import scalaz._
import Scalaz._
import scala.language.higherKinds 
import scala.language.implicitConversions
object FreeModules {
  object FreeInteract {
    trait Interact[+A]
    type FreeInteract[A] = Free.FreeC[Interact,A]
    object Interact {
      case class Ask(prompt: String) extends Interact[String]
      case class Tell(msg: String) extends Interact[Unit]
      implicit def interactToFreeC[A](ia: Interact[A]) = Free.liftFC(ia)
      object InteractConsole extends (Interact ~> Id) {
        def apply[A](ia: Interact[A]): Id[A] = ia match {
          case Ask(p) => println(p); readLine
          case Tell(m) => println(m)
        }
      }
    }
    import Interact._
    val interactScript = for {
      first <- Ask("What's your first name?")
      last <- Ask("What's your last name?")
      _ <- Tell(s"Hello ${first} ${last}, nice to meet you!")
    } yield ()
  }
}


这是一个我们在前面讨论中重复描述几次的简单交互例子,包括了ADT、AST和Interpreter。我们可以直接运行这个程序:

object freePrgDemo extends App {
  import FreeModules._
  import FreeInteract._
  import Interact._
  Free.runFC(interactScript)(InteractConsole)  
}


运算结果如下:

What's your first name?
Tiger
What's your last name?
Chan
Hello Tiger Chan, nice to meet you!


就是简单的两句界面提示和键盘输入,然后提示输入结果,没什么意义。作为测试,我们也可以模拟Console交互:用Map[String,String]来模拟Map[提问,回答],然后把这个Map提供给Interpreter,返回结果(List[String],A),其中List[String]是运行跟踪记录,A是模拟的键盘输入:

      type InteractMapTester[A] = Map[String,String] => (List[String], A)
      implicit val mapTesterMonad = new Monad[InteractMapTester] {
         def point[A](a: => A) = _ => (List(), a)
         def bind[A,B](ia: InteractMapTester[A])(f: A => InteractMapTester[B]): InteractMapTester[B] =
           m => {
             val (o1,a1) = ia(m)
             val (o2,a2) = f(a1)(m)
             (o1 ++ o2, a2)
           }
      }
      object InteractTesterMap extends (Interact ~> InteractMapTester) {
        def apply[A](ia: Interact[A]): InteractMapTester[A] = ia match {
          case Ask(p) => { m => (List(), m(p)) } //m(p)返回提问对应的答案作为键盘输入
          case Tell(s) => { m => (List(s), ()) } //List(s)在bind函数中的o1++o2形成跟踪记录
                                                 //在运算AST时就会调用InteractMapTester的bind函数
        }
      }


使用模拟Console的Interpreter来运行:

object freePrgDemo extends App {
  import FreeModules._
  import FreeInteract._
  import Interact._
  //Free.runFC(interactScript)(InteractConsole) 
    val result = Free.runFC(interactScript)(InteractTesterMap).apply(
    Map(
    "What's your first name?" -> "tiger",
    "What's your last name?" -> "chan"
  ))
  println(result)
  }
//产生以下输出结果
(List(Hello tiger chan, nice to meet you!),())


从mapTesterMonad定义中的bind看到了这句:o1++o2,是Logger的典型特征。那么用Writer能不能实现同等效果呢?我们先看看WriterT:

final case class WriterT[F[_], W, A](run: F[(W, A)]) { self =>
...


实际上这个W就可以满足Logger的功能,因为在WriterT的flatMap中实现了W|+|W:

  def flatMap[B](f: A => WriterT[F, W, B])(implicit F: Bind[F], s: Semigroup[W]): WriterT[F, W, B] =
    flatMapF(f.andThen(_.run))

  def flatMapF[B](f: A => F[(W, B)])(implicit F: Bind[F], s: Semigroup[W]): WriterT[F, W, B] =
    writerT(F.bind(run){wa =>
      val z = f(wa._2)
      F.map(z)(wb => (s.append(wa._1, wb._1), wb._2))
    })


那么如何把Map[提问,回答]传人呢?我们可以通过WriterT[F[_],W,A]的F[]来实现这一目的:

      type WriterTF[A] = Map[String,String] => A
      type InteractWriterTester[A] = WriterT[WriterTF,List[String],A]


然后我们可以用WriterT的参数run来传人Map[String,String]:run:WriterTF[(W,A)] == Map[String,String]=>(W,A)。

以下是用WriterT实现的Interpreter版本:

      type WriterTF[A] = Map[String,String] => A
      type InteractWriterTester[A] = WriterT[WriterTF,List[String],A]
      def testerToWriter[A](f: Map[String,String] => (List[String], A)) = 
        WriterT[WriterTF,List[String],A](f)
      implicit val writerTesterMonad = WriterT.writerTMonad[WriterTF, List[String]]
      object InteractTesterWriter extends (Interact ~> InteractWriterTester) {
        def apply[A](ia: Interact[A]): InteractWriterTester[A] = ia match {
          case Ask(p) => testerToWriter { m => (List(), m(p)) }
          case Tell(s) => testerToWriter { m => (List(s), ())}
        }
      }


我们可以这样运行:

object freePrgDemo extends App {
  import FreeModules._
  import FreeInteract._
  import Interact._
  //Free.runFC(interactScript)(InteractConsole) 
  //val result = Free.runFC(interactScript)(InteractTesterMap).apply(
  val result = Free.runFC(interactScript)(InteractTesterWriter).run(
    Map(
    "What's your first name?" -> "tiger",
    "What's your last name?" -> "chan"
  )) 
  println(result)
  
}


我们再设计另一个用户登录Login的例子:

  object FreeUserLogin {  
    import Dependencies._
    trait UserLogin[+A]
    type FreeUserLogin[A] = Free.FreeC[UserLogin,A]
    object UserLogin {
      case class Login(user: String, pswd: String) extends UserLogin[Boolean]
      implicit def loginToFree[A](ul: UserLogin[A]) = Free.liftFC(ul)
      type LoginService[A] = Reader[PasswordControl,A]
      object LoginInterpreter extends (UserLogin ~> LoginService) {
        def apply[A](ul: UserLogin[A]): LoginService[A] = ul match {
          case Login(u,p) => Reader( cr => cr.matchPassword(u, p))
        }
      }
    }
    import UserLogin._
    val loginScript = for {
      b <- Login("Tiger","1234")
    } yield b
  }


这个例子里只有Login一个ADT,它的功能是把输入的User和Password与一个用户登录管理系统内的用户身份信息进行验证。由于如何进行用户密码验证不是这个ADT的功能,它可能涉及另一特殊功能系统的调用,刚好用来做个Reader依赖注入示范。以下是这项依赖定义:

object Dependencies {
  trait PasswordControl {
    type User = String
    type Password = String
    val pswdMap: Map[User, Password]
    def matchPassword(u: User, p: Password): Boolean
  }
}


对loginScript进行测试运算时必须先获取PasswordControl实例,然后注入运算:

  import Dependencies._
  import FreeUserLogin._
  import UserLogin._
  object Passwords extends PasswordControl {  //依赖实例
     val pswdMap = Map (
       "Tiger" -> "1234",
       "John" -> "0332"
     )
     def matchPassword(u: User, p: Password) = pswdMap.getOrElse(u, p+"!") === p
  } 
  val result = Free.runFC(loginScript)(LoginInterpreter).run(Passwords)  //注入依赖
  println(result)


不过即使能够运行,loginScsript的功能明显不完整,还需要像Interact那样的互动部分来获取用户输入信息。那么我们是不是考虑在ADT层次上把Interact和UserLogin合并起来,像这样:

      case class Ask(prompt: String) extends Interact[String]
      case class Tell(msg: String) extends Interact[Unit]
      case class Login(user: String, pswd: String) extends Interact[Boolean]


明显这是可行的。但是,Interact和Login被紧紧捆绑在了一起形成了一个新的ADT。如果我们设计另一个同样需要互动的ADT,我们就需要重复同样的Interact功能设计,显然这样做违背了FP的原则:从功能单一的基本计算开始,按需要对基本函数进行组合实现更复杂的功能。Interact和UserLogin都是基础ADT,从编程语言角度描述Interact和UserLogin属于两种类型的编程语句。我们最终需要的AST是这样的:

  val interLogin: Free[???, A] = for {
    user <- Ask("Enter User ID:")  //Free[Interact,A]
    pswd <- Ask("Enter Password:") //Free[Interact,A]
    ok <- Login(user,pswd) //Free[UserLogin,A]
  } yield ok


不过明显类型对不上,因为Interact和UserLogin是两种语句。scalaz的Coproduct类型可以帮助我们实现两种Monadic语句的语义(sematics)合并。Coproduct是这样定义的:scalaz/Coproduct.scala

/** `F` on the left, and `G` on the right, of [[scalaz.\/]].
  *
  * @param run The underlying [[scalaz.\/]]. */
final case class Coproduct[F[_], G[_], A](run: F[A] \/ G[A]) {
  import Coproduct._

  def map[B](f: A => B)(implicit F: Functor[F], G: Functor[G]): Coproduct[F, G, B] =
    Coproduct(run.bimap(F.map(_)(f), G.map(_)(f)))
...

从run:F[A]\/G[A]可以理解Coproduct是两种语句F,G的联合(union)。在我们上面的例子里我们可以用下面的表达方式代表Interact和UserLogin两种语句的联合(union):

  type InteractLogin[A] = Coproduct[Interact,UserLogin,A]


这是一个语义更广泛的类型:包含了Interact和UserLogin语义。我们可以用Inject类型来把Interact和UserLogin语句集“注入”到一个更大的句集。Inject是这样定义的:scalaz/Inject.scala

/**
 * Inject type class as described in "Data types a la carte" (Swierstra 2008).
 *
 * @see [[http://www.staff.science.uu.nl/~swier004/Publications/DataTypesALaCarte.pdf]]
 */
sealed abstract class Inject[F[_], G[_]] {
  def inj[A](fa: F[A]): G[A]
  def prj[A](ga: G[A]): Option[F[A]]
}

sealed abstract class InjectInstances {
  implicit def reflexiveInjectInstance[F[_]] =
    new Inject[F, F] {
      def inj[A](fa: F[A]) = fa
      def prj[A](ga: F[A]) = some(ga)
    }

  implicit def leftInjectInstance[F[_], G[_]] =
    new Inject[F, ({type λ[α] = Coproduct[F, G, α]})#λ] {
      def inj[A](fa: F[A]) = Coproduct.leftc(fa)
      def prj[A](ga: Coproduct[F, G, A]) = ga.run.fold(some(_), _ => none)
    }

  implicit def rightInjectInstance[F[_], G[_], H[_]](implicit I: Inject[F, G]) =
      new Inject[F, ({type λ[α] = Coproduct[H, G, α]})#λ] {
        def inj[A](fa: F[A]) = Coproduct.rightc(I.inj(fa))
        def prj[A](ga: Coproduct[H, G, A]) = ga.run.fold(_ => none, I.prj(_))
      }
}
...


实现函数inj(fa:F[A]):G[A]代表把F[A]并入G[A]。这里还提供了三个类型的实例:

1、reflexiceInjectInstance[F[_]]:自我注入

2、leftInjectInstance[F[_],G[_]]:把F[A]注入Coproduct[F,G,A]的left(-\/)

3、rightInjectInstance[F[_],G[_],H[_]]:把F[A]注入Coproduct的right(\/-)。需要先把F注入G(inj(F[A]):G[A])

我们可以用implicitly来证明Interact和UserLogin的Inject实例存在:

  val selfInj = implicitly[Inject[Interact,Interact]]
  type LeftInterLogin[A] = Coproduct[Interact,UserLogin,A]
  val leftInj = implicitly[Inject[Interact,LeftInterLogin]]
  type RightInterLogin[A] = Coproduct[UserLogin,LeftInterLogin,A]
  val rightInj = implicitly[Inject[Interact,RightInterLogin]]

现在我们需要把Coproduct[F,G,A]的F与G合并然后把F[A]升格成Free[G,A]:

  object coproduct {
    def lift[F[_],G[_],A](fa: F[A])(implicit I: Inject[F,G]): Free.FreeC[G,A] = Free.liftFC(I.inj(fa))
  }


我们可以用这个lift把Interact和UserLogin的ADT统一升格成Free[G,A]:

  object coproduct {
    import FreeInteract._
    import Interact._
    import FreeUserLogin._
    import UserLogin._
    def lift[F[_],G[_],A](fa: F[A])(implicit I: Inject[F,G]): Free.FreeC[G,A] = Free.liftFC(I.inj(fa))
    class Interacts[G[_]](implicit I: Inject[Interact,G]) {
      def ask(prompt: String): Free.FreeC[G,String] = lift(Ask(prompt))
      def tell(msg: String): Free.FreeC[G,Unit] = lift(Tell(msg))
    }
    class Logins[G[_]](implicit I: Inject[UserLogin,G]) {
      def login(u: String, p: String): Free.FreeC[G,Boolean] = lift(Login(u,p))
    }
  }


我们用lift把基础Interact和UserLogin的语句注入了联合的语句集G[A],然后升格成FreeC[G,A]。现在我们可以把Interact,UserLogin这两种语句用在同一个for-comprehension里了:

  def loginScript[G[_]](implicit I: Interacts[G], L: Logins[G]) ={
    import I._
    import L._
    for {
      uid <- ask("ya id?")
      pwd <- ask("password?")
      login <- login(uid,pwd)
      _ <- if (login) tell("ya lucky bastard!") else tell("geda fk outa here!")
    } yield()
  }

有了Inject和Lift,现在已经成功的用两种ADT集成了一个AST。不过我们还必须提供Interacts[G]和Logins[G]实例:

object CoproductModules {
  object CoproductFunctions {
    import FreeInteract._
    import Interact._
    import FreeUserLogin._
    import UserLogin._
    def lift[F[_],G[_],A](fa: F[A])(implicit I: Inject[F,G]): Free.FreeC[G,A] = Free.liftFC(I.inj(fa))
    class Interacts[G[_]](implicit I: Inject[Interact,G]) {
      def ask(prompt: String): Free.FreeC[G,String] = lift(Ask(prompt))
      def tell(msg: String): Free.FreeC[G,Unit] = lift(Tell(msg))
    }
    object Interacts {
      implicit def instance[G[_]](implicit I: Inject[Interact,G]) = new Interacts[G]
    }
    class Logins[G[_]](implicit I: Inject[UserLogin,G]) {
      def login(u: String, p: String): Free.FreeC[G,Boolean] = lift(Login(u,p))
    }
    object Logins {
      implicit def instance[G[_]](implicit I: Inject[UserLogin,G]) = new Logins[G]
    }
  }


现在我们的语句集(AST)是一个联合的语句集(Coproduct)。那么,我们应该怎么去运算它呢?我们应该如何实现它的Interpreter?现在我们面对的Monadic程序类型是个Coproduct:

  type InteractLogin[A] = Coproduct[Interact,UserLogin,A]
  val loginPrg = loginScript[InteractLogin]


现在语句集Interact和UserLogin是分别放在Coproduce的左右两边。那么我们可以历遍这个Coproduct来分别运算Interact和UserLogin语句:

  def or[F[_],G[_],H[_]](fg: F ~> G, hg: H ~> G): ({type l[x] = Coproduct[F,H,x]})#l ~> G =
    new (({type l[x] = Coproduct[F,H,x]})#l ~> G) {
    def apply[A](ca: Coproduct[F,H,A]): G[A] = ca.run match {
      case -\/(fa) => fg(fa)
      case \/-(ha) => hg(ha)
    }
  }


值得注意的是如果or函数用在Interact和UserLogin上时它们自然转换(NaturalTransformation)的目标类型必须一致,应该是一个更大的类型,而且必须是Monad,这是NaturalTransformation的要求。所以我们可以把InteractInterpreter的转换目标类型由Id变成Reader,也就是LoginInterpreter的转换目标类型:

  object InteractReader extends (Interact ~> LoginService) {
    def apply[A](ia: Interact[A]): LoginService[A] = ia match {
    case Ask(p) => println(p);  Reader(cr => readLine)
    case Tell(m) => println(m); Reader(cr => ())
   }
  }      


好了,现在我们可以这样来测试运算:

object freePrgDemo extends App {
  import FreeModules._
  import FreeInteract._
  import Interact._
  //Free.runFC(interactScript)(InteractConsole) 
  //val result = Free.runFC(interactScript)(InteractTesterMap).apply(
 /* val result = Free.runFC(interactScript)(InteractTesterWriter).run(
    Map(
    "What's your first name?" -> "tiger",
    "What's your last name?" -> "chan"
  )) 
  println(result)
  */
  import Dependencies._
  import FreeUserLogin._
  import UserLogin._
  
  object Passwords extends PasswordControl {
     val pswdMap = Map (
       "Tiger" -> "1234",
       "John" -> "0332"
     )
     def matchPassword(u: User, p: Password) = pswdMap.getOrElse(u, p+"!") === p
  } 
  /*
  val result = Free.runFC(loginScript)(LoginInterpreter).run(Passwords)
  println(result)
  */
  
  import CoproductDemo._
  Free.runFC(loginPrg)(or(InteractReader,LoginInterpreter)).run(Passwords)
}


我们把密码管理依赖也注入进去了。看看结果:

ya id?
Tiger
password?
2012
geda fk outa here!

ya id?
Tiger
password?
1234
ya lucky bastard!

ya id?
John
password?
0332
ya lucky bastard!

OK, 把这节示范源代码提供在下面:

package demos
import scalaz._
import Scalaz._
import scala.language.higherKinds 
import scala.language.implicitConversions
object FreeModules {
  object FreeInteract {
    trait Interact[+A]
    type FreeInteract[A] = Free.FreeC[Interact,A]
    object Interact {
      case class Ask(prompt: String) extends Interact[String]
      case class Tell(msg: String) extends Interact[Unit]
      implicit def interactToFreeC[A](ia: Interact[A]) = Free.liftFC(ia)
      object InteractConsole extends (Interact ~> Id) {
        def apply[A](ia: Interact[A]): Id[A] = ia match {
          case Ask(p) => println(p); readLine
          case Tell(m) => println(m)
        }
      }      
      type InteractMapTester[A] = Map[String,String] => (List[String], A)
      implicit val mapTesterMonad = new Monad[InteractMapTester] {
         def point[A](a: => A) = _ => (List(), a)
         def bind[A,B](ia: InteractMapTester[A])(f: A => InteractMapTester[B]): InteractMapTester[B] =
           m => {
             val (o1,a1) = ia(m)
             val (o2,a2) = f(a1)(m)
             (o1 ++ o2, a2)
           }
      }
      object InteractTesterMap extends (Interact ~> InteractMapTester) {
        def apply[A](ia: Interact[A]): InteractMapTester[A] = ia match {
          case Ask(p) => { m => (List(), m(p)) } //m(p)返回提问对应的答案作为键盘输入
          case Tell(s) => { m => (List(s), ()) } //List(s)在bind函数中的o1++o2形成跟踪记录
                                                 //在运算AST时会用到InteractMapTester的bind
        }
      }
      type WriterTF[A] = Map[String,String] => A
      type InteractWriterTester[A] = WriterT[WriterTF,List[String],A]
      def testerToWriter[A](f: Map[String,String] => (List[String], A)) = 
        WriterT[WriterTF,List[String],A](f)
      implicit val writerTesterMonad = WriterT.writerTMonad[WriterTF, List[String]]
      object InteractTesterWriter extends (Interact ~> InteractWriterTester) {
        def apply[A](ia: Interact[A]): InteractWriterTester[A] = ia match {
          case Ask(p) => testerToWriter { m => (List(), m(p)) }
          case Tell(s) => testerToWriter { m => (List(s), ())}
        }
      }
    }
    import Interact._
    val interactScript = for {
      first <- Ask("What's your first name?")
      last <- Ask("What's your last name?")
      _ <- Tell(s"Hello ${first} ${last}, nice to meet you!")
    } yield ()
  }
  object FreeUserLogin {  
    import Dependencies._
    trait UserLogin[+A]
    type FreeUserLogin[A] = Free.FreeC[UserLogin,A]
    object UserLogin {
      case class Login(user: String, pswd: String) extends UserLogin[Boolean]
      implicit def loginToFree[A](ul: UserLogin[A]) = Free.liftFC(ul)
      type LoginService[A] = Reader[PasswordControl,A]
      object LoginInterpreter extends (UserLogin ~> LoginService) {
        def apply[A](ul: UserLogin[A]): LoginService[A] = ul match {
          case Login(u,p) => Reader( cr => cr.matchPassword(u, p))
        }
      }
    }
    import UserLogin._
    val loginScript = for {
      b <- Login("Tiger","1234")
    } yield b
  }
}
object Dependencies {
  trait PasswordControl {
    type User = String
    type Password = String
    val pswdMap: Map[User, Password]
    def matchPassword(u: User, p: Password): Boolean
  }
}
object CoproductDemo {
  import FreeModules._
  import FreeUserLogin._
  import UserLogin._
  import FreeInteract._
  import Interact._
  import Dependencies._
  def lift[F[_],G[_],A](fa: F[A])(implicit I: Inject[F,G]): Free.FreeC[G,A] = Free.liftFC(I.inj(fa))
  class Interacts[G[_]](implicit I: Inject[Interact,G]) {
    def ask(prompt: String) = lift(Ask(prompt))
    def tell(msg: String) = lift(Tell(msg))
  }
  object Interacts {
    implicit def instance[F[_]](implicit I: Inject[Interact,F]) = new Interacts[F]
  }
  class Logins[G[_]](implicit I: Inject[UserLogin,G]) {
    def login(user: String, pswd: String) = lift(Login(user,pswd))
  }
  object Logins {
    implicit def instance[F[_]](implicit I: Inject[UserLogin,F]) = new Logins[F]
  }
  def loginScript[G[_]](implicit I: Interacts[G], L: Logins[G]) ={
    import I._
    import L._
    for {
      uid <- ask("ya id?")
      pwd <- ask("password?")
      login <- login(uid,pwd)
      _ <- if (login) tell("ya lucky bastard!") else tell("geda fk outa here!")
    } yield()
  }
  
  def or[F[_],G[_],H[_]](fg: F ~> G, hg: H ~> G): ({type l[x] = Coproduct[F,H,x]})#l ~> G =
    new (({type l[x] = Coproduct[F,H,x]})#l ~> G) {
    def apply[A](ca: Coproduct[F,H,A]): G[A] = ca.run match {
      case -\/(fa) => fg(fa)
      case \/-(ha) => hg(ha)
    }
  }
 
  type InteractLogin[A] = Coproduct[Interact,UserLogin,A]
  val loginPrg = loginScript[InteractLogin]
  object InteractReader extends (Interact ~> LoginService) {
    def apply[A](ia: Interact[A]): LoginService[A] = ia match {
    case Ask(p) => println(p);  Reader(cr => readLine)
    case Tell(m) => println(m); Reader(cr => ())
   }
  }      
 
}

object freePrgDemo extends App {
  import FreeModules._
  import FreeInteract._
  import Interact._
  //Free.runFC(interactScript)(InteractConsole) 
  //val result = Free.runFC(interactScript)(InteractTesterMap).apply(
 /* val result = Free.runFC(interactScript)(InteractTesterWriter).run(
    Map(
    "What's your first name?" -> "tiger",
    "What's your last name?" -> "chan"
  )) 
  println(result)
  */
  import Dependencies._
  import FreeUserLogin._
  import UserLogin._
  
  object Passwords extends PasswordControl {
     val pswdMap = Map (
       "Tiger" -> "1234",
       "John" -> "0332"
     )
     def matchPassword(u: User, p: Password) = pswdMap.getOrElse(u, p+"!") === p
  } 
  /*
  val result = Free.runFC(loginScript)(LoginInterpreter).run(Passwords)
  println(result)
  */
  
  import CoproductDemo._
  Free.runFC(loginPrg)(or(InteractReader,LoginInterpreter)).run(Passwords)
}













 



















Scalaz(38)- Free :Coproduce-Monadic语句组合

标签:

原文地址:http://blog.csdn.net/tiger_xc/article/details/51063700

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!