标签:
在《数字图象处理》中提供了基于
图像仿射矩阵T。图像旋转、偏移变换等变换原理相同,根据这些在自己实现时,可分为三个步骤:
坐标转换
这些变换是以图像的中心为坐标原点(O’(x’,y’)),而图片原本设定是以图像左上角为坐标原点(O(x,y))。所以要进行坐标的变换。
用矩阵的方式表示:
逆运算:
图像变换
变换公式:
逆运算:
下面是旋转的最邻近内插法和双线性内插法的实现:
void nearestInterpolation(Mat &src, Mat &dst, float dx, float dy, double theta);
int mainqqw()
{
cv::Mat src = imread("D:/xitong/picture/rain.jpg");
namedWindow("orginal");
imshow("orginal", src);
int srcwidth = src.cols;
int srcheigh = src.rows;
/*旋转角度*/
double theta = 30.0f*3.1415926 / 180.0f;
/*
转换坐标原点到图像中心
∧y
|
0 | 1
|
--------o--------->x
|
2 | 3
|
*/
float srcX[4], srcY[4];
srcX[0] = (float)(-((srcwidth - 1) / 2));
srcX[1] = (float)((srcwidth - 1) / 2);
srcX[2] = (float)(-(srcwidth - 1) / 2);
srcX[3] = (float)((srcwidth - 1) / 2);
srcY[0] = (float)((srcheigh - 1) / 2);
srcY[1] = (float)((srcheigh - 1) / 2);
srcY[2] = (float)(-(srcheigh - 1) / 2);
srcY[3] = (float)(-(srcheigh - 1) / 2);
/*
旋转后的图像坐标,此时坐标原点依然是旋转中心
*/
float dstX[4], dstY[4];
for (int i = 0; i < 4; i++)
{
dstX[i] = cos(theta)*srcX[i] + sin(theta)*srcY[i];
dstY[i] = -sin(theta)*srcX[i] + cos(theta)*srcY[i];
}
/*
==>旋转后图像长宽
*/
int dstwidth = (max(fabs(dstX[3] - dstX[0]), fabs(dstX[2] - dstX[1])) + 0.5);
int dstheigh = (max(fabs(dstY[3] - dstY[0]), fabs(dstY[2] - dstY[1])) + 0.5);
/*Mat dst = Mat(Size(src.rows * 2, src.cols * 2), src.type(), Scalar::all(0));
nearestInterpolation(src, dst, 0.5);*/
Mat dst;
dst.create(dstheigh, dstwidth, src.type());
//**式在运算后的常量,为运算方便提前的出结果
float dx = -0.5*dstwidth*cos(theta) - 0.5*dstheigh*sin(theta) + 0.5*srcwidth;
float dy = 0.5*dstwidth*sin(theta) - 0.5*dstheigh*cos(theta) + 0.5*srcheigh;
nearestInterpolation(src, dst, dx, dy, theta);
waitKey();
return 0;
}
/*
最邻近内插旋转
*/
void nearestInterpolation(Mat &src, Mat &dst, float dx, float dy, double theta)
{
int x, y;
for (int i = 0; i < dst.rows; i++)
{
for (int j = 0; j < dst.cols; j++)
{
/*
**式,的运算结果
*/
x = cvFloor(float(j)*cos(theta) + float(i)*sin(theta) + dx);
y = cvFloor(float(-j)*sin(theta) + float(i)*cos(theta) + dy);
if ((x < 0) || (x >= src.cols) || (y < 0) || (y >= src.rows))
{
if (src.channels() == 3)
dst.at<Vec3b>(i, j) = Vec3b(0, 0, 0);
if (src.channels() == 1)
dst.at<uchar>(i, j) = 0;
}
else
{
if (src.channels() == 3)
dst.at<Vec3b>(i, j) = src.at<Vec3b>(y, x);
if (src.channels() == 1)
dst.at<uchar>(i, j) = src.at<uchar>(y, x);
}
}
}
namedWindow("最邻近内插旋转");
imshow("最邻近内插旋转", dst);
}
/*
双线性内插法旋转
*/
void bilinearRotate(Mat &src, Mat &dst, float dx, float dy, double theta)
{
float fu, fv;
int x, y;
Vec3b point[4];
uchar upoint[4];
for (int j = 0; j < dst.rows; j++)
{
for (int i = 0; i < dst.cols; i++)
{
fu = float(j)*cos(theta) + float(i)*sin(theta) + dx;
fv = float(-j)*sin(theta) + float(i)*cos(theta) + dy;
x = cvFloor(fu);
y = cvFloor(fv);
fu -= x;
fv -= y;
if ((x < 0) || (x >= src.cols-1) || (y < 0) || (y >= src.rows-1))
{
if (src.channels() == 3)
dst.at<Vec3b>(i, j) = Vec3b(0, 0, 0);
if (src.channels() == 1)
dst.at<uchar>(i, j) = 0;
}
else
{
if (src.channels() == 3)
{
point[0] = src.at<Vec3b>(y, x);
point[1] = src.at<Vec3b>(y + 1, x);
point[2] = src.at<Vec3b>(y, x + 1);
point[3] = src.at<Vec3b>(y + 1, x + 1);
dst.at<Vec3b>(i, j) = (1 - fu)*(1 - fv)*point[0] + (1 - fu)*(fv)*point[1] + (1 - fv)*(fu)*point[2] + fu*fv*point[3];
}
if (src.channels() == 1)
{
upoint[0] = src.at<uchar>(y, x);
upoint[1] = src.at<uchar>(y + 1, x);
upoint[2] = src.at<uchar>(y, x + 1);
upoint[3] = src.at<uchar>(y + 1, x + 1);
dst.at<uchar>(i, j) = (1 - fu)*(1 - fv)*upoint[0] + (1 - fu)*(fv)*upoint[1] + (1 - fv)*(fu)*upoint[2] + fu*fv*upoint[3];
}
}
}
}
namedWindow("双线性内插法旋转");
imshow("双线性内插法旋转", dst);
}
标签:
原文地址:http://blog.csdn.net/u013524303/article/details/51133988