码迷,mamicode.com
首页 > 其他好文 > 详细

cv1.1

时间:2016-04-13 13:21:08      阅读:240      评论:0      收藏:0      [点我收藏+]

标签:


分水岭算法实现分割

分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。
       分水岭算法一般和区域生长法或聚类分析法相结合。

       分水岭算法一般用于分割感兴趣的图像区域,应用如细胞边界的分割,分割出相片中的头像等等。


技术分享技术分享

// watershedSegmenter.h
#if !defined WATERSHS
#define WATERSHS

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>

class WatershedSegmenter {

  private:

	  cv::Mat markers;

  public:

	  void setMarkers(const cv::Mat& markerImage) {

		// Convert to image of ints
		markerImage.convertTo(markers,CV_32S);
	  }

	  cv::Mat process(const cv::Mat &image) {

		// Apply watershed
		cv::watershed(image,markers);

		return markers;
	  }

	  // Return result in the form of an image
	  cv::Mat getSegmentation() {
		  
		cv::Mat tmp;
		// all segment with label higher than 255
		// will be assigned value 255
		markers.convertTo(tmp,CV_8U);

		return tmp;
	  }

	  // Return watershed in the form of an image
	  cv::Mat getWatersheds() {
	
		cv::Mat tmp;
		markers.convertTo(tmp,CV_8U,255,255);

		return tmp;
	  }
};


#endif

// cv2.cpp : Defines the entry point for the console application.
//
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;

#include "watershedSegmenter.h"


int main()
{
	// Read input image
	cv::Mat image= cv::imread("f:\\img\\group.jpg");
	if (!image.data)
		return 0; 

    // Display the image
	cv::namedWindow("Original Image");
	cv::imshow("Original Image",image);

	// Get the binary map
	cv::Mat binary;
	binary= cv::imread("f:\\img\\binary.bmp",0);

    // Display the binary image
	cv::namedWindow("Binary Image");
	cv::imshow("Binary Image",binary);

	// Eliminate noise and smaller objects
	cv::Mat fg;
	cv::erode(binary,fg,cv::Mat(),cv::Point(-1,-1),6);

    // Display the foreground image
	cv::namedWindow("Foreground Image");
	cv::imshow("Foreground Image",fg);
	cv::imwrite("ForegroundImage.jpg",fg);
	// Identify image pixels without objects
	cv::Mat bg;
	cv::dilate(binary,bg,cv::Mat(),cv::Point(-1,-1),6);
	cv::threshold(bg,bg,1,128,cv::THRESH_BINARY_INV);

    // Display the background image
	cv::namedWindow("Background Image");
	cv::imshow("Background Image",bg);
	cv::imwrite("BackgroundImage.jpg",bg);
	// Show markers image
	cv::Mat markers(binary.size(),CV_8U,cv::Scalar(0));
	markers= fg+bg;
	cv::namedWindow("Markers");
	cv::imshow("Markers",markers);
	cv::imwrite("Markers.jpg",markers);
	// Create watershed segmentation object
	WatershedSegmenter segmenter;

	// Set markers and process
	segmenter.setMarkers(markers);
	segmenter.process(image);

	// Display segmentation result
	cv::namedWindow("Segmentation");
	cv::imshow("Segmentation",segmenter.getSegmentation());
	cv::imwrite("Segmentation.jpg",segmenter.getSegmentation());
	// Display watersheds
	cv::namedWindow("Watersheds");
	cv::imshow("Watersheds",segmenter.getWatersheds());
	cv::imwrite("Watersheds.jpg",segmenter.getWatersheds());	
	// Open another image
	image= cv::imread("f:\\img\\tower.jpg");

	// Identify background pixels
	cv::Mat imageMask(image.size(),CV_8U,cv::Scalar(0));
	cv::rectangle(imageMask,cv::Point(5,5),cv::Point(image.cols-5,image.rows-5),cv::Scalar(255),3);
	// Identify foreground pixels (in the middle of the image)
	cv::rectangle(imageMask,cv::Point(image.cols/2-10,image.rows/2-10),
						 cv::Point(image.cols/2+10,image.rows/2+10),cv::Scalar(1),10);

	// Set markers and process
	segmenter.setMarkers(imageMask);
	segmenter.process(image);

    // Display the image with markers
	cv::rectangle(image,cv::Point(5,5),cv::Point(image.cols-5,image.rows-5),cv::Scalar(255,255,255),3);
	cv::rectangle(image,cv::Point(image.cols/2-10,image.rows/2-10),
						 cv::Point(image.cols/2+10,image.rows/2+10),cv::Scalar(1,1,1),10);
	cv::namedWindow("Image with marker");
	cv::imshow("Image with marker",image);
	cv::imwrite("Image with marker.jpg",image);
	// Display watersheds
	cv::namedWindow("Watersheds of foreground object");
	cv::imshow("Watersheds of foreground object",segmenter.getWatersheds());
	cv::imwrite("Watersheds of foreground object.jpg",segmenter.getWatersheds());

	cv::waitKey();
	return 0;
}


grabcut算法进行图像分割

原理在这几篇博客里已经讲得很仔细了,涉及到的内容也比较多,大家可以查阅一下,它是一个系列来的

①、图像分割之(一)概述

②、 图像分割之(二)Graph Cut(图割)

③、 图像分割之(三)从Graph Cut到Grab Cut

④、 图像分割之(四)OpenCV的GrabCut函数使用和源码解读

总的来说,GrabCut算法时Graph Cut算法的改进,主要有以下几点的改进

①、Graph Cut的目标和背景的模型是灰度直方图,Grab Cut取代为RGB三通道的混合高斯模型GMM;

②、Graph Cut的能量最小化(分割)是一次达到的,而Grab Cut取代为一个不断进行分割估计和模型参数学习的交互迭代过程;

③、Grab Cut允许不完全的标注,Graph Cut需要用户指定目标和背景的一些种子点,但是Grab Cut只需要提供背景区域的像素集,最后如果需要得到更精确的分割,可以在初次分割的结果上加上一些确定的种子点,再运行算法。

  void cv::grabCut( const Mat& img, Mat& mask, Rect rect,
             Mat& bgdModel, Mat& fgdModel,
             int iterCount, int mode )
其中:
img——待分割的源图像,必须是8位3通道(CV_8UC3)图像,在处理的过程中不会被修改;
mask——掩码图像,如果使用掩码进行初始化,那么mask保存初始化掩码信息;在执行分割的时候,也可以将用户交互所设定的前景与背景保存到mask中,然后再传入grabCut函数;在处理结束之后,mask中会保存结果。mask只能取以下四种值:
GCD_BGD(=0),背景;
GCD_FGD(=1),前景;
GCD_PR_BGD(=2),可能的背景;
GCD_PR_FGD(=3),可能的前景。
如果没有手工标记GCD_BGD或者GCD_FGD,那么结果只会有GCD_PR_BGD或GCD_PR_FGD;
rect——用于限定需要进行分割的图像范围,只有该矩形窗口内的图像部分才被处理;
bgdModel——背景模型,如果为null,函数内部会自动创建一个bgdModel;bgdModel必须是单通道浮点型(CV_32FC1)图像,且行数只能为1,列数只能为13x5;
fgdModel——前景模型,如果为null,函数内部会自动创建一个fgdModel;fgdModel必须是单通道浮点型(CV_32FC1)图像,且行数只能为1,列数只能为13x5;
iterCount——迭代次数,必须大于0;
mode——用于指示grabCut函数进行什么操作,可选的值有:
GC_INIT_WITH_RECT(=0),用矩形窗初始化GrabCut;
GC_INIT_WITH_MASK(=1),用掩码图像初始化GrabCut;
GC_EVAL(=2),执行分割。

GrabCut的用法
    您可以按以下方式来使用GrabCut函数:
(1)用矩形窗或掩码图像初始化grabCut;
(2)执行分割;
(3)如果对结果不满意,在掩码图像中设定前景和(或)背景,再次执行分割;
(4)使用掩码图像中的前景或背景信息。

例子1

技术分享
// cv2.cpp : Defines the entry point for the console application.
//
#include <opencv2/opencv.hpp>
//#include <cv.h>
//#include <highgui.h>


using namespace cv;
using namespace std;
#include <iostream>




void getBinMask( const Mat& comMask, Mat& binMask )
{
    binMask.create( comMask.size(), CV_8UC1 );
    binMask = comMask & 1;
}
int main( int argc, char** argv )
{
    Mat image = imread( "f:\\img\\lena.jpg", 1 );
	const string winName = "image";
	imshow("src",image);

	/***********************************/
	Mat bg;Mat fg;
	Rect rect = Rect(47,48,408,464);
	Mat mask,res;
	mask.create( image.size(), CV_8UC1);
    grabCut( image, mask, rect, bg, fg, 1, 0 );

	Mat binMask;
	getBinMask( mask, binMask );
    image.copyTo( res, binMask );
	imshow("cut",res);
	/***********************************/
	waitKey(0);
    return 0;
}

例子2

技术分享

技术分享


#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
const Scalar RED = Scalar(0,0,255);
const Scalar PINK = Scalar(230,130,255);
const Scalar BLUE = Scalar(255,0,0);
const Scalar LIGHTBLUE = Scalar(255,255,160);
const Scalar GREEN = Scalar(0,255,0);

const int BGD_KEY = CV_EVENT_FLAG_CTRLKEY;//当CTRL被按下时,flags返回的值
const int FGD_KEY = CV_EVENT_FLAG_SHIFTKEY;//当SHIFT被按下时,flags返回的值

static void getBinMask( const Mat& comMask, Mat& binMask )
{
  if( comMask.empty() || comMask.type()!=CV_8UC1 )
    CV_Error( CV_StsBadArg, "comMask is empty or has incorrect type (not CV_8UC1)" );
  if( binMask.empty() || binMask.rows!=comMask.rows || binMask.cols!=comMask.cols )
    binMask.create( comMask.size(), CV_8UC1 );
  binMask = comMask & 1;
}
class GCApplication
{
public:
  enum{ NOT_SET = 0, IN_PROCESS = 1, SET = 2 };
  static const int radius = 2;
  static const int thickness = -1;

  void reset();
  void setImageAndWinName( const Mat& _image, const string& _winName );
  void showImage() const;
  void mouseClick( int event, int x, int y, int flags, void* param );
  int nextIter();
  int getIterCount() const { return iterCount; }
private:
  void setRectInMask();
  void setLblsInMask( int flags, Point p, bool isPr );

  const string* winName;
  const Mat* image;
  Mat mask;
  Mat bgdModel, fgdModel;
  //rectState, lblsState, prLblsState三个变量分别表示矩形标记的状态,
  //鼠标左键标记的状态,鼠标右键标记的状态,分别有三个状态:NOT_SET(未处理)
  //IN_PROCESS(处理)、SET(已处理)
  uchar rectState, lblsState, prLblsState;
  bool isInitialized;

  Rect rect;
  //在第一次矩形分割后,第二次标记mask值时,四种值出现的点都分别保存在
  //fgdPxls, bgdPxls, prFgdPxls, prBgdPxls四个变量中
  vector<Point> fgdPxls, bgdPxls, prFgdPxls, prBgdPxls;
  //迭代的次数
  int iterCount;
};

#include "GCApplication.h"
//初始化掩码图和各变量
//mask图GrabCut函数中对应第二个参数,标记图片中哪些属于前景,哪些属于背景
//mask图只可存入四种数值,分别为:GC_BGD、GC_FGD、GC_PR_BGD、GC_PR_FGD
//mask初始化为背景,即赋值为GC_BGD
void GCApplication::reset()
{
  if( !mask.empty() )
    mask.setTo(Scalar::all(GC_BGD));
  bgdPxls.clear(); fgdPxls.clear();
  prBgdPxls.clear();  prFgdPxls.clear();
  isInitialized = false;
  rectState = NOT_SET;
  lblsState = NOT_SET;
  prLblsState = NOT_SET;
  iterCount = 0;
}
//初始化窗口和图片
//将读取的图片和窗口名存入类中的私有变量image和winName中,有利于存储
//初始化掩码图以及各变量
void GCApplication::setImageAndWinName( const Mat& _image, const string& _winName  )
{
  if( _image.empty() || _winName.empty() )
    return;
  image = &_image;
  winName = &_winName;
  mask.create( image->size(), CV_8UC1);
  reset();
}
//显示图片
//如果 fgdPxls, bgdPxls, prFgdPxls, prBgdPxls变量非空,则在图片中显示标记的点
//如果 rectState 已经表示被标记,则也在图片中显示标记的矩形
void GCApplication::showImage() const
{
  if( image->empty() || winName->empty() )
    return;

  Mat res;
  Mat binMask;
  //如果图像已经被重置,则拷贝整幅图像
  //否则显示已经被处理过的图像
  if( !isInitialized )
    image->copyTo( res );
  else
  {
    getBinMask( mask, binMask );
    image->copyTo( res, binMask );
  }

  vector<Point>::const_iterator it;
  for( it = bgdPxls.begin(); it != bgdPxls.end(); ++it )
    circle( res, *it, radius, BLUE, thickness );
  for( it = fgdPxls.begin(); it != fgdPxls.end(); ++it )
    circle( res, *it, radius, RED, thickness );
  for( it = prBgdPxls.begin(); it != prBgdPxls.end(); ++it )
    circle( res, *it, radius, LIGHTBLUE, thickness );
  for( it = prFgdPxls.begin(); it != prFgdPxls.end(); ++it )
    circle( res, *it, radius, PINK, thickness );

  if( rectState == IN_PROCESS || rectState == SET )
    rectangle( res, Point( rect.x, rect.y ), Point(rect.x + rect.width, rect.y + rect.height ), GREEN, 2);

  imshow( *winName, res );
}
//通过矩形标记Mask
void GCApplication::setRectInMask()
{
  assert( !mask.empty() );
  mask.setTo( GC_BGD );
  rect.x = max(0, rect.x);
  rect.y = max(0, rect.y);
  rect.width = min(rect.width, image->cols-rect.x);
  rect.height = min(rect.height, image->rows-rect.y);
  (mask(rect)).setTo( Scalar(GC_PR_FGD) );
}

void GCApplication::setLblsInMask( int flags, Point p, bool isPr )
{
  vector<Point> *bpxls, *fpxls;
  uchar bvalue, fvalue;
  //如果左键按下,则运行以下代码
  if( !isPr )
  {
    bpxls = &bgdPxls;
    fpxls = &fgdPxls;
    bvalue = GC_BGD;
    fvalue = GC_FGD;
  }
  //否则,运行以下代码
  else
  {
    bpxls = &prBgdPxls;
    fpxls = &prFgdPxls;
    bvalue = GC_PR_BGD;
    fvalue = GC_PR_FGD;
  }
  //判断是shift键被按下或者ctrl键被按下,分别执行操作
  if( flags & BGD_KEY )
  {
    bpxls->push_back(p);
    circle( mask, p, radius, bvalue, thickness );
  }
  if( flags & FGD_KEY )
  {
    fpxls->push_back(p);
    circle( mask, p, radius, fvalue, thickness );
  }
}
//鼠标响应
void GCApplication::mouseClick( int event, int x, int y, int flags, void* )
{
  // TODO add bad args check
  switch( event )
  {
  case CV_EVENT_LBUTTONDOWN: // set rect or GC_BGD(GC_FGD) labels
    {
      bool isb = (flags & BGD_KEY) != 0,
        isf = (flags & FGD_KEY) != 0;
      //如果rectState为NOT_SET并且ctrl或者shift没被按下,则运行以下代码,设置矩形框
      if( rectState == NOT_SET && !isb && !isf )
      {
        rectState = IN_PROCESS;
        rect = Rect( x, y, 1, 1 );
      }
      //如果rectState为SET,并且ctrl或者shift被按下,则运行以下代码,标记GC_BGD(GC_FGD)
      if ( (isb || isf) && rectState == SET )
        lblsState = IN_PROCESS;
    }
    break;
  case CV_EVENT_RBUTTONDOWN: // set GC_PR_BGD(GC_PR_FGD) labels
    {
      //如果rectState为SET,并且ctrl或者shift被按下时,标记GC_PR_BGD(GC_PR_FGD)
      bool isb = (flags & BGD_KEY) != 0,
        isf = (flags & FGD_KEY) != 0;
      if ( (isb || isf) && rectState == SET )
        prLblsState = IN_PROCESS;
    }
    break;
  case CV_EVENT_LBUTTONUP:
    //如果rectState为IN_PROCESS,则确定鼠标走过的整个矩形,并且通过矩形设置Mask
    if( rectState == IN_PROCESS )
    {
      rect = Rect( Point(rect.x, rect.y), Point(x,y) );
      rectState = SET;
      setRectInMask();
      assert( bgdPxls.empty() && fgdPxls.empty() && prBgdPxls.empty() && prFgdPxls.empty() );
      showImage();
    }
    //如果lblsState为IN_PROCESS,则通过圆圈标记Mask
    if( lblsState == IN_PROCESS )
    {
      setLblsInMask(flags, Point(x,y), false);
      lblsState = SET;
      showImage();
    }
    break;
  case CV_EVENT_RBUTTONUP:
    //如果prLblsState为IN_PROCESS,则通过圆圈标记Mask
    if( prLblsState == IN_PROCESS )
    {
      setLblsInMask(flags, Point(x,y), true);
      prLblsState = SET;
      showImage();
    }
    break;
  case CV_EVENT_MOUSEMOVE:
    //如果rectState为IN_PROCESS,则鼠标移动时生成矩形
    if( rectState == IN_PROCESS )
    {
      rect = Rect( Point(rect.x, rect.y), Point(x,y) );
      assert( bgdPxls.empty() && fgdPxls.empty() && prBgdPxls.empty() && prFgdPxls.empty() );
      showImage();
    }//如果lblsState为IN_PROCESS,则鼠标移动时用圆圈标记Mask
    else if( lblsState == IN_PROCESS )
    {
      setLblsInMask(flags, Point(x,y), false);
      showImage();
    }//如果prLblsState为IN_PROCESS,则鼠标移动时用圆圈标记Mask
    else if( prLblsState == IN_PROCESS )
    {
      setLblsInMask(flags, Point(x,y), true);
      showImage();
    }
    break;
  }
}
//如果lblsState或者prLblsState被设置为SET,则说明图片已经被鼠标标记处前景和背景,
//而且已经经过矩形处理过一次了,则执行grabCut的GC_INIT_WITH_MASK形式,否则,执行
//GC_INIT_WITH_RECT形式,清除bgdPxls等变量标记,方便下次标记
int GCApplication::nextIter()
{
  if( isInitialized )
    grabCut( *image, mask, rect, bgdModel, fgdModel, 3 );
  else
  {
    if( rectState != SET )
      return iterCount;

    if( lblsState == SET || prLblsState == SET )
      grabCut( *image, mask, rect, bgdModel, fgdModel, 3, GC_INIT_WITH_MASK );
    else
      grabCut( *image, mask, rect, bgdModel, fgdModel, 3, GC_INIT_WITH_RECT );

    isInitialized = true;
  }
  iterCount++;

  bgdPxls.clear(); fgdPxls.clear();
  prBgdPxls.clear(); prFgdPxls.clear();

  return iterCount;
}


// cv2.cpp : Defines the entry point for the console application.
//
#include <opencv2/opencv.hpp>
//#include <cv.h>
//#include <highgui.h>
using namespace cv;
using namespace std;
#include <iostream>
#include "GCApplication.h"

static void help()
{
  cout << "\nThis program demonstrates GrabCut segmentation -- select an object in a region\n"
    "and then grabcut will attempt to segment it out.\n"
    "Call:\n"
    "./grabcut <image_name>\n"
    "\nSelect a rectangular area around the object you want to segment\n" <<
    "\nHot keys: \n"
    "\tESC - quit the program\n"
    "\tr - restore the original image\n"
    "\tn - next iteration\n"
    "\n"
    "\tleft mouse button - set rectangle\n"
    "\n"
    "\tCTRL+left mouse button - set GC_BGD pixels\n"
    "\tSHIFT+left mouse button - set CG_FGD pixels\n"
    "\n"
    "\tCTRL+right mouse button - set GC_PR_BGD pixels\n"
    "\tSHIFT+right mouse button - set CG_PR_FGD pixels\n" << endl;
}


GCApplication gcapp;

static void on_mouse( int event, int x, int y, int flags, void* param )
{
  gcapp.mouseClick( event, x, y, flags, param );
}

int main( int argc, char** argv )
{
  //读取图片文件
  string filename ="f:\\img\\ball2.jpg";
  if( filename.empty() )
  {
    cout << "\nDurn, couldn't read any file."<< endl;
    return 1;
  }
  Mat image = imread( filename, 1 );
  if( image.empty() )
  {
    cout << "\n Durn, couldn't read image filename " << filename << endl;
    return 1;
  }
  //帮助说明
  help();
  imshow("src",image);

  const string winName = "image";
  namedWindow( winName, WINDOW_AUTOSIZE );
  //设置鼠标响应函数
  setMouseCallback( winName, on_mouse, 0 );
  //初始化窗口和图片
  gcapp.setImageAndWinName( image, winName );
  gcapp.showImage();

  for(;;)
  {
    int c = waitKey(0);
    switch( (char) c )
    {
      //ESC按键退出
    case '\x1b':
      cout << "Exiting ..." << endl;
      goto exit_main;
      //r按键重置图像
    case 'r':
      cout << endl;
      gcapp.reset();
      gcapp.showImage();
      break;
      //n按键进行一次处理
    case 'n':
      int iterCount = gcapp.getIterCount();
      cout << "<" << iterCount << "... ";
      int newIterCount = gcapp.nextIter();
      if( newIterCount > iterCount )
      {
        gcapp.showImage();
        cout << iterCount << ">" << endl;
      }
      else
        cout << "rect must be determined>" << endl;
      break;
    }
  }

exit_main:
  destroyWindow( winName );
  return 0;
}

直线拟合

求直线距离

技术分享

// cv2.cpp : Defines the entry point for the console application.
//
#include "ProcessImage.h"  
#include <iostream>  
#include <opencv2/opencv.hpp>  
#define _TEST  
using namespace cv;  
int main(int argc, char * argv[])  
{  
    //判断输入是否满足要求  
  
    IplImage *pSrc = cvLoadImage("f:\\img\\line.png", CV_LOAD_IMAGE_GRAYSCALE);  
    if (!pSrc)  
    {  
        std::cout << "read file failed!";  
        return -1;  
    }  
  
    //显示原图  
    namedWindow("原图", CV_WINDOW_AUTOSIZE);  
    cvShowImage("原图", pSrc);  
  
    IplImage *pTemp = cvCreateImage(cvGetSize(pSrc), pSrc->depth, pSrc->nChannels);  
    IplImage *pDst = cvCreateImage(cvGetSize(pSrc), pSrc->depth, pSrc->nChannels);  
  
    //将原图像转换为二值图像  
    cvThreshold(pSrc, pTemp, 128, 1, CV_THRESH_BINARY_INV);  
    //细化  
    thinImage(pTemp, pDst);  
  
#ifdef _TEST  
    //显示细化后的图像  
    IplImage *pThinImage = cvCreateImage(cvGetSize(pSrc), pSrc->depth, pSrc->nChannels);  
    cvCopy(pDst, pThinImage);  
    cvThreshold(pThinImage, pThinImage, 0.5, 255,CV_THRESH_BINARY);  
    namedWindow("1 图像细化的结果", CV_WINDOW_AUTOSIZE);  
    cvShowImage("1 图像细化的结果", pThinImage);  
    cvReleaseImage(&pThinImage);  
#endif  
  
    //求轮廓  
    CvMemStorage* storage = cvCreateMemStorage(0);  
    CvSeq* contours = 0;  
    cvFindContours(pDst , storage, &contours, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_NONE, cvPoint(0, 0));  
  
#ifdef _TEST  
    //将轮廓画出来  
    IplImage *pDrawing1 = cvCreateImage(cvGetSize(pSrc),8,3);  
    cvZero(pDrawing1);  
    cvDrawContours(pDrawing1, contours, Scalar(255, 0, 0), Scalar(0, 0, 255), 1, 2, 8, cvPoint(0, 0));  
    namedWindow("2 求轮廓", CV_WINDOW_AUTOSIZE);  
    cvShowImage("2 求轮廓", pDrawing1);  
    cvReleaseImage(&pDrawing1);  
#endif  
  
  
    //轮廓已经寻找到,均在contours中存放,我们需要对轮廓进行拟合  
    //FitLine函数的用法:  
    // 二维空间点拟合时 是 float[4]  
    // 三位空间点拟合时 是 float[6]    
    float *line1 = new float[4];  
    float *line2 = new float[4];  
    // 第一个参数: 存储点序列  
    // 第二个参数: 拟合算法,其中 CV_DIST_L2 就是平常的最小二乘法  
    // 第三,第四,第五参数推荐值是 0,   0.01,  0.01,  
    // 第六参数: line中存储返回值  
    // 二维空间时: line[0--3] 分别为 (vx, vy, x0, y0)  
    //      其中 vx, vy 是正规化之后的斜率向量。 x0,y0 是直线经过的点。  
    // 三维空间时: line[0--5]  分别是 (vx, vy, vz, x0, y0, z0) 。意义同上  
    cvFitLine(contours, CV_DIST_L2, 0, 0.01, 0.01, line1);  
    cvFitLine(contours->h_next, CV_DIST_L2, 0, 0.01, 0.01, line2);  
      
    //输出四个点  
    std::cout << "第一条线: " << line1[0] << " " << line1[1] << " " << line1[2] << " " << line1[3] << std::endl;  
    std::cout << "第二条线: " << line2[0] << " " << line2[1] << " " << line2[2] << " " << line2[3] << std::endl;  
      
#ifdef _TEST  
    //根据直线方程公式,我们从直线上取点,并画出来  
    IplImage *pDrawing2 = cvCreateImage(cvGetSize(pSrc), 8, 3);  
    cvZero(pDrawing2);  
    cvLine(pDrawing2, cvPoint(0, (int)(line1[3] - line1[1] / line1[0] * line1[2])),  
        cvPoint(pDrawing2->width - 1, (int)((pDrawing2->width - 1 - line1[2])*line1[1] / line1[0] + line1[3])),  
        cvScalar(255, 0, 0));  
    cvLine(pDrawing2, cvPoint(0, (int)(line2[3] - line2[1] / line2[0] * line2[2])),   
        cvPoint(pDrawing2->width - 1, (int)((pDrawing2->width - 1 - line2[2])*line2[1] / line2[0] + line2[3])),   
        cvScalar(0, 0, 255));  
    namedWindow("3 直线拟合", CV_WINDOW_AUTOSIZE);  
    cvShowImage("3 直线拟合", pDrawing2);  
    cvReleaseImage(&pDrawing2);  
#endif  
  
    //我们根据距离方程,求出两条直线的距离  
    double distance = abs(line1[0] * (line2[3]-line1[3]) - line1[1] * (line2[2]-line1[2])); //注意,vx,vy已经正规化了  
    std::cout << "两条直线之间的距离为: " << distance << std::endl;  
    delete[] line1;  
    delete[] line2;  
  
    cvReleaseMemStorage(&storage);  
    cvReleaseImage(&pSrc);  
    cvReleaseImage(&pTemp);  
    cvReleaseImage(&pDst);  
  
    waitKey(0);  
  
    return 0;  
}  

//ProcessImage.h  
#pragma once  
#include <opencv2/highgui/highgui.hpp>  
  
/* 对输入图像进行细化 
 * src为输入图像,用cvThreshold函数处理过的8位灰度图像格式,元素中只有0与1,1代表有元素,0代表为空白 
 * dst为对src细化后的输出图像,格式与src格式相同,调用前需要分配空间,元素中只有0与1,1代表有元素,0代表为空白 
 * maxIterations限制迭代次数,如果不进行限制,默认为-1,代表不限制迭代次数,直到获得最终结果 
 */  
void thinImage(IplImage* src, IplImage* dst, int maxIterations = -1); 

    //ProcessImage.cpp  
    #include "ProcessImage.h"  
    #include <utility>  
    #include <vector>  
    void thinImage(IplImage* src, IplImage* dst, int maxIterations)  
    {  
        using namespace cv;  
        CvSize size = cvGetSize(src);  
        cvCopy(src, dst);//将src中的内容拷贝到dst中    
        int count = 0;  //记录迭代次数    
        while (true)  
        {  
            count++;  
            if (maxIterations != -1 && count > maxIterations) //限制次数并且迭代次数到达    
                break;  
            //std::cout << count << ' ';输出迭代次数    
            std::vector<std::pair<int, int> > mFlag; //用于标记需要删除的点    
            //对点标记    
            for (int i = 0; i<size.height; ++i)  
            {  
                for (int j = 0; j<size.width; ++j)  
                {  
                    //如果满足四个条件,进行标记    
                    //  p9 p2 p3    
                    //  p8 p1 p4    
                    //  p7 p6 p5    
                    int p1 = CV_IMAGE_ELEM(dst, uchar, i, j);  
                    int p2 = (i == 0) ? 0 : CV_IMAGE_ELEM(dst, uchar, i - 1, j);  
                    int p3 = (i == 0 || j == size.width - 1) ? 0 : CV_IMAGE_ELEM(dst, uchar, i - 1, j + 1);  
                    int p4 = (j == size.width - 1) ? 0 : CV_IMAGE_ELEM(dst, uchar, i, j + 1);  
                    int p5 = (i == size.height - 1 || j == size.width - 1) ? 0 : CV_IMAGE_ELEM(dst, uchar, i + 1, j + 1);  
                    int p6 = (i == size.height - 1) ? 0 : CV_IMAGE_ELEM(dst, uchar, i + 1, j);  
                    int p7 = (i == size.height - 1 || j == 0) ? 0 : CV_IMAGE_ELEM(dst, uchar, i + 1, j - 1);  
                    int p8 = (j == 0) ? 0 : CV_IMAGE_ELEM(dst, uchar, i, j - 1);  
                    int p9 = (i == 0 || j == 0) ? 0 : CV_IMAGE_ELEM(dst, uchar, i - 1, j - 1);  
      
                    if ((p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) >= 2 && (p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) <= 6)  
                    {  
                        int ap = 0;  
                        if (p2 == 0 && p3 == 1) ++ap;  
                        if (p3 == 0 && p4 == 1) ++ap;  
                        if (p4 == 0 && p5 == 1) ++ap;  
                        if (p5 == 0 && p6 == 1) ++ap;  
                        if (p6 == 0 && p7 == 1) ++ap;  
                        if (p7 == 0 && p8 == 1) ++ap;  
                        if (p8 == 0 && p9 == 1) ++ap;  
                        if (p9 == 0 && p2 == 1) ++ap;  
      
                        if (ap == 1)  
                        {  
                            if (p2*p4*p6 == 0)  
                            {  
                                if (p4*p6*p8 == 0)  
                                {  
                                    //标记    
                                    mFlag.push_back(std::make_pair(i, j));  
                                }  
                            }  
                        }  
                    }  
                }  
            }  
      
            //将标记的点删除    
            for (std::vector<std::pair<int, int> >::iterator i = mFlag.begin(); i != mFlag.end(); ++i)  
            {  
                CV_IMAGE_ELEM(dst, uchar, i->first, i->second) = 0;  
            }  
      
            //直到没有点满足,算法结束    
            if (mFlag.size() == 0)  
            {  
                break;  
            }  
            else  
            {  
                mFlag.clear();//将mFlag清空    
            }  
      
            //对点标记    
            for (int i = 0; i<size.height; ++i)  
            {  
                for (int j = 0; j<size.width; ++j)  
                {  
                    //如果满足四个条件,进行标记    
                    //  p9 p2 p3    
                    //  p8 p1 p4    
                    //  p7 p6 p5    
                    int p1 = CV_IMAGE_ELEM(dst, uchar, i, j);  
                    if (p1 != 1) continue;  
                    int p2 = (i == 0) ? 0 : CV_IMAGE_ELEM(dst, uchar, i - 1, j);  
                    int p3 = (i == 0 || j == size.width - 1) ? 0 : CV_IMAGE_ELEM(dst, uchar, i - 1, j + 1);  
                    int p4 = (j == size.width - 1) ? 0 : CV_IMAGE_ELEM(dst, uchar, i, j + 1);  
                    int p5 = (i == size.height - 1 || j == size.width - 1) ? 0 : CV_IMAGE_ELEM(dst, uchar, i + 1, j + 1);  
                    int p6 = (i == size.height - 1) ? 0 : CV_IMAGE_ELEM(dst, uchar, i + 1, j);  
                    int p7 = (i == size.height - 1 || j == 0) ? 0 : CV_IMAGE_ELEM(dst, uchar, i + 1, j - 1);  
                    int p8 = (j == 0) ? 0 : CV_IMAGE_ELEM(dst, uchar, i, j - 1);  
                    int p9 = (i == 0 || j == 0) ? 0 : CV_IMAGE_ELEM(dst, uchar, i - 1, j - 1);  
      
                    if ((p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) >= 2 && (p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) <= 6)  
                    {  
                        int ap = 0;  
                        if (p2 == 0 && p3 == 1) ++ap;  
                        if (p3 == 0 && p4 == 1) ++ap;  
                        if (p4 == 0 && p5 == 1) ++ap;  
                        if (p5 == 0 && p6 == 1) ++ap;  
                        if (p6 == 0 && p7 == 1) ++ap;  
                        if (p7 == 0 && p8 == 1) ++ap;  
                        if (p8 == 0 && p9 == 1) ++ap;  
                        if (p9 == 0 && p2 == 1) ++ap;  
      
                        if (ap == 1)  
                        {  
                            if (p2*p4*p8 == 0)  
                            {  
                                if (p2*p6*p8 == 0)  
                                {  
                                    //标记    
                                    mFlag.push_back(std::make_pair(i, j));  
                                }  
                            }  
                        }  
                    }  
                }  
            }  
            //删除    
            for (std::vector<std::pair<int, int> >::iterator i = mFlag.begin(); i != mFlag.end(); ++i)  
            {  
                CV_IMAGE_ELEM(dst, uchar, i->first, i->second) = 0;  
            }  
      
            //直到没有点满足,算法结束    
            if (mFlag.size() == 0)  
            {  
                break;  
            }  
            else  
            {  
                mFlag.clear();//将mFlag清空    
            }  
        }  
    }  


圆拟合

椭圆拟合

技术分享

#include "opencv\\cv.h"
#include "opencv\\highgui.h"
int slider_pos = 70;
IplImage *image02 = 0, *image03 = 0, *image04 = 0;
void process_image(int h);
int main( int argc, char** argv )
{
    const char* filename = "f:\\img\\tc.png";
    
    // 读入图像,强制为灰度图像
    if( (image03 = cvLoadImage(filename, 0)) == 0 )
        return -1;
    // Create the destination images
    image02 = cvCloneImage( image03 );
    image04 = cvCloneImage( image03 );
    // Create windows.
    cvNamedWindow("Source", 1);
    cvNamedWindow("Result", 1);
    // Show the image.
    cvShowImage("Source", image03);
    // Create toolbars. HighGUI use.
    cvCreateTrackbar( "Threshold", "Result", &slider_pos, 255, process_image );
    process_image(0);
    // Wait for a key stroke; the same function arranges events processing                
    cvWaitKey(0);
    cvReleaseImage(&image02);
    cvReleaseImage(&image03);
    cvDestroyWindow("Source");
    cvDestroyWindow("Result");
    return 0;
}
// Define trackbar callback functon. This function find contours,
// draw it and approximate it by ellipses.
void process_image(int h)
{
    CvMemStorage* stor;
    CvSeq* cont;
    CvBox2D32f* box;
    CvPoint* PointArray;
    CvPoint2D32f* PointArray2D32f;
    
    // 创建动态结构序列
    stor = cvCreateMemStorage(0);
    cont = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint) , stor);
    
    // 二值话图像.
    cvThreshold( image03, image02, slider_pos, 255, CV_THRESH_BINARY );
    
    // 寻找所有轮廓.
    cvFindContours( image02, stor, &cont, sizeof(CvContour), 
                    CV_RETR_LIST, CV_CHAIN_APPROX_NONE, cvPoint(0,0));
    
    // Clear images. IPL use.
    cvZero(image02);
    cvZero(image04);
    
    // 本循环绘制所有轮廓并用椭圆拟合.
    for(;cont;cont = cont->h_next)
    {   
        int i; // Indicator of cycle.
        int count = cont->total; // This is number point in contour
        CvPoint center;
        CvSize size;
        
        // Number point must be more than or equal to 6 (for cvFitEllipse_32f).        
        if( count < 6 )
            continue;
        
        // Alloc memory for contour point set.    
        PointArray = (CvPoint*)malloc( count*sizeof(CvPoint) );
        PointArray2D32f= (CvPoint2D32f*)malloc( count*sizeof(CvPoint2D32f) );
        
        // Alloc memory for ellipse data.
        box = (CvBox2D32f*)malloc(sizeof(CvBox2D32f));
        
        // Get contour point set.
        cvCvtSeqToArray(cont, PointArray, CV_WHOLE_SEQ);
        
        // Convert CvPoint set to CvBox2D32f set.
        for(i=0; i<count; i++)
        {
            PointArray2D32f[i].x = (float)PointArray[i].x;
            PointArray2D32f[i].y = (float)PointArray[i].y;
        }
        
        //拟合当前轮廓.
        cvFitEllipse(PointArray2D32f, count, box);
        
        // 绘制当前轮廓.
        cvDrawContours(image04,cont,CV_RGB(255,255,255),
CV_RGB(255,255,255),0,1,8,cvPoint(0,0));
        
        // Convert ellipse data from float to integer representation.
        center.x = cvRound(box->center.x);
        center.y = cvRound(box->center.y);
        size.width = cvRound(box->size.width*0.5);
        size.height = cvRound(box->size.height*0.5);
        box->angle = -box->angle;
        
        // Draw ellipse.
        cvEllipse(image04, center, size,
                  box->angle, 0, 360,
                  CV_RGB(0,0,255), 1, CV_AA, 0);
        
        // Free memory.          
        free(PointArray);
        free(PointArray2D32f);
        free(box);
    }
    
    // Show image. HighGUI use.
    cvShowImage( "Result", image04 );
}



图像修补

例子1

技术分享

// cv2.cpp : Defines the entry point for the console application.
//
#include <opencv2/opencv.hpp> 

#include <iostream>

using namespace cv;
using namespace std;

static void help()
{
    cout << "\nCool inpainging demo. Inpainting repairs damage to images by floodfilling the damage \n"
            << "with surrounding image areas.\n"
            "Using OpenCV version %s\n" << CV_VERSION << "\n"
    "Usage:\n"
        "./inpaint [image_name -- Default fruits.jpg]\n" << endl;

    cout << "Hot keys: \n"
        "\tESC - quit the program\n"
        "\tr - restore the original image\n"
        "\ti or SPACE - run inpainting algorithm\n"
        "\t\t(before running it, paint something on the image)\n" << endl;
}

Mat img, inpaintMask;
Point prevPt(-1,-1);

static void onMouse( int event, int x, int y, int flags, void* )
{
    if( event == CV_EVENT_LBUTTONUP || !(flags & CV_EVENT_FLAG_LBUTTON) )
        prevPt = Point(-1,-1);
    else if( event == CV_EVENT_LBUTTONDOWN )
        prevPt = Point(x,y);
    else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON) )
    {
        Point pt(x,y);
        if( prevPt.x < 0 )
            prevPt = pt;
        line( inpaintMask, prevPt, pt, Scalar::all(255), 5, 8, 0 );
        line( img, prevPt, pt, Scalar::all(255), 5, 8, 0 );
        prevPt = pt;
        imshow("image", img);
    }
}


int main( int argc, char** argv )
{       
        //读取图像和mask图像
    char* filename = "f:\\img\\inpaint.jpg";
    Mat img0 = imread(filename, -1);
    if(img0.empty())
    {
        cout << "Couldn't open the image " << filename << ". Usage: inpaint <image_name>\n" << endl;
        return 0;
    }

   
    namedWindow( "image", 1 );
    img = img0.clone();
  
    imshow("image", img);

        Mat inpaintMask = imread("f:\\img\\mask2.jpg", 0);
        imshow("mask",inpaintMask);     
              Mat inpainted;
                          //注意这个inpaintmask的
              inpaint(img, inpaintMask, inpainted, 3, CV_INPAINT_TELEA);
              imshow("inpainted image", inpainted);
    cv::waitKey();
    return 0;
}

例子2

技术分享

// cv2.cpp : Defines the entry point for the console application.
//
#include <opencv2/opencv.hpp> 
    #include<iostream>  
    #include<opencv2/opencv.hpp>  
      
    using namespace std;  
    using namespace cv;  
      
    bool g_bDrawing = false;  
    Point g_CurrPoint, g_OrgPoint;  
    int g_nThick = 5, g_nBlue = 255, g_nGreen = 255, g_nRed = 0;  
    int g_nImageOneValue = 49;  
    Mat srcImage;  
    Mat grayImage;  
    Mat maskImage;  
      
    /*注意:不能在毁掉函数中写入未初始化的矩阵类,所以需要用时,需要写一个标志位,然后再在while(1)循环内使用*/  
    void onMouse(int event, int x, int y, int flag, void *param)  
    {  
        Mat &img = *(cv::Mat*)param;  
      
        switch (event)  
        {  
            //移动鼠标的时候  
        case CV_EVENT_MOUSEMOVE:  
        {  
                                   g_OrgPoint = g_CurrPoint;  
                                   g_CurrPoint = Point(x, y);  
      
                                   if (g_bDrawing == 1)  
                                   {  
                                       line(srcImage, g_CurrPoint, g_OrgPoint, Scalar(g_nBlue, g_nGreen, g_nRed), g_nThick);  
                                       imshow("【鼠标事件窗口】", srcImage);  
      
                                       //在掩膜图上进行显示  
                                       line(maskImage, g_CurrPoint, g_OrgPoint, Scalar(g_nBlue, g_nGreen, g_nRed), g_nThick);  
                                       imshow("【掩膜图像】", maskImage);  
                                   }  
        }  
            break;  
            //点击鼠标左键时  
        case CV_EVENT_LBUTTONDOWN:  
        {  
                                     g_bDrawing = true;  
                                     g_OrgPoint = Point(x, y);  
                                     g_CurrPoint = g_OrgPoint;  
        }  
            break;  
            //松开鼠标左键时  
        case CV_EVENT_LBUTTONUP:  
        {  
                                   g_bDrawing = false;  
        }  
            break;  
        }  
    }  
      
    int main()  
    {  
        Mat tempImage;  
        RNG &rng = theRNG();  
      
        srcImage = imread("f:\\img\\inp3.png");  
      
        //用一个变量来存储原图像  
        Mat g_srcImage;  
        srcImage.copyTo(g_srcImage);  
      
        //为掩膜图 分配空间  
        maskImage.create(srcImage.size(), CV_8UC1);  
        maskImage = Scalar::all(0);  
      
        namedWindow("【鼠标事件窗口】");  
        setMouseCallback("【鼠标事件窗口】", onMouse, 0);  
      
        namedWindow("【滚动条窗口】", 0);  
        createTrackbar("thick", "【滚动条窗口】", &g_nThick, 100, 0);  
        createTrackbar("Blue", "【滚动条窗口】", &g_nBlue, 255, 0);  
        createTrackbar("Green", "【滚动条窗口】", &g_nGreen, 255, 0);  
        createTrackbar("Red", "【滚动条窗口】", &g_nRed, 255, 0);  
      
        char key;  
        while (1)  
        {  
            imshow("【鼠标事件窗口】", srcImage);  
            key = waitKey();  
            if (key == 27)  
                break;  
      
            //如果检测到 键值是1 则恢复原图  
            if (key == '1')  
            {  
                g_srcImage.copyTo(srcImage);  
                maskImage = Scalar::all(0);  
                imshow("【鼠标事件窗口】", srcImage);  
            }  
      
            //如果检测到空格 则开始执行图像修复  
            Mat dstImage;  
            dstImage.create(srcImage.size(), srcImage.type());  
            if (key == ' ')  
            {  
                inpaint(srcImage, maskImage, dstImage, 3, INPAINT_TELEA);  
                imshow("【修补后的图像】", dstImage);  
            }  
        }  
      
        return 0;  
    }  



cv1.1

标签:

原文地址:http://blog.csdn.net/q123456789098/article/details/51141226

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!