码迷,mamicode.com
首页 > 其他好文 > 详细

2的正幂末尾数的模式

时间:2016-04-14 15:42:38      阅读:276      评论:0      收藏:0      [点我收藏+]

标签:

2的正幂 — 2, 4, 8, 16, 32, 64, 128, 256, … — 末尾数字遵循一个显而易见的规律: 2, 4, 8, 6, 2, 4, 8, 6, … . 这4个数字永远循环下去。最末尾数以外还有循环 — 实际上是最末m位 — 从2m 开始的2的幂。例如,从04开始最末两位数就存在一个长度20的循环,同时从008开始最末3位数就存在一个长度100的循环。

本文,我将告诉你为什么会有这些循环,它们有多长,如何表达为数学形式,如何看见它们。

最末尾数的循环

末位数-所在位置-是十进制整数d在d/10后的余数。等价地,末位数是d mod 10的结果,根据约定取最小非负值-普通余数-作为返回结果。模运算,持续叠加到2的幂运算,得到末位数的循环:

  1. 技术分享
  2. 技术分享
  3. 技术分享
  4. 技术分享
  5. 技术分享
  6. 技术分享

我们从2开始,取10的模,再乘以2,再对10取模,等等。可知此模式将循环,直到先前的一个结果-2再次出现在第五步-循环确认。这展现了数字 2n, n ≥ 1, 末位数在四个数字 2, 4, 8, 和 6间循环。

这循环告诉我们,末尾数相同的2的幂是有关联的,它们的指数相差4:

  • Ends in 2: 21, 25, 29, 213, 217, … .
  • Ends in 4: 22, 26, 210, 214, 218, … .
  • Ends in 8: 23, 27, 211, 215, 219, … .
  • Ends in 6: 24, 28, 212, 216, 220, … .

你可以使用指数运算规则来更简洁地描述,展示所有2的幂中末位数有规律的前4个:

  • Ends in 2: 21·24k, or 21+4k, k ≥ 0.
  • Ends in 4: 22·24k, or 22+4k, k ≥ 0.
  • Ends in 8: 23·24k, or 23+4k, k ≥ 0.
  • Ends in 6: 24·24k, or 24+4k, k ≥ 0.

也可以按照指数对4取模的结果来对2的幂建立联系:

  • Ends in 2: 技术分享
  • Ends in 4: 技术分享
  • Ends in 8: 技术分享
  • Ends in 6: 技术分享

这就很容易知道任意2的正幂的末位数是几。例如, 2319 的末位数是 8, 因为 技术分享.

Cycle in the Last Digit of 2n, n≥1
Power of Two (k ≥ 0)Exponent (mod 4)Last Digit
21+4k 1 2
22+4k 2 4
23+4k 3 8
24+4k 0 6

小结,表格告诉我们,如果 技术分享, 技术分享.

末两位数的循环

类似的分析,只是对100取模,展示2的幂的末两位数,从 22 开始,循环周期是20:

Cycle in the Last Two Digits of 2n, n≥2
Power of Two (k ≥ 0)Exponent (mod 20)Last 2 Digits
22+20k 2 04
23+20k 3 08
24+20k 4 16
25+20k 5 32
26+20k 6 64
27+20k 7 28
28+20k 8 56
29+20k 9 12
210+20k 10 24
211+20k 11 48
212+20k 12 96
213+20k 13 92
214+20k 14 84
215+20k 15 68
216+20k 16 36
217+20k 17 72
218+20k 18 44
219+20k 19 88
220+20k 0 76
221+20k 1 52

末三位的循环

为了找出末三位数的循环,重复上面的过程,对1000取模。下面展示了2的幂的末三位,从 23开始,循环周期是100:

Cycle in the Last Three Digits of 2n, n≥3
Power of Two (k ≥ 0)Exponent (mod 100)Last 3 Digits
23+100k 3 008
24+100k 4 016
25+100k 5 032
26+100k 6 064
27+100k 7 128
28+100k 8 256
29+100k 9 512
210+100k 10 024
211+100k 11 048
212+100k 12 096
213+100k 13 192
214+100k 14 384
215+100k 15 768
216+100k 16 536
217+100k 17 072
218+100k 18 144
219+100k 19 288
220+100k 20 576
221+100k 21 152
222+100k 22 304
223+100k 23 608
224+100k 24 216
225+100k 25 432
226+100k 26 864
227+100k 27 728
228+100k 28 456
229+100k 29 912
230+100k 30 824
231+100k 31 648
232+100k 32 296
233+100k 33 592
234+100k 34 184
235+100k 35 368
236+100k 36 736
237+100k 37 472
238+100k 38 944
239+100k 39 888
240+100k 40 776
241+100k 41 552
242+100k 42 104
243+100k 43 208
244+100k 44 416
245+100k 45 832
246+100k 46 664
247+100k 47 328
248+100k 48 656
249+100k 49 312
250+100k 50 624
251+100k 51 248
252+100k 52 496
253+100k 53 992
254+100k 54 984
255+100k 55 968
256+100k 56 936
257+100k 57 872
258+100k 58 744
259+100k 59 488
260+100k 60 976
261+100k 61 952
262+100k 62 904
263+100k 63 808
264+100k 64 616
265+100k 65 232
266+100k 66 464
267+100k 67 928
268+100k 68 856
269+100k 69 712
270+100k 70 424
271+100k 71 848
272+100k 72 696
273+100k 73 392
274+100k 74 784
275+100k 75 568
276+100k 76 136
277+100k 77 272
278+100k 78 544
279+100k 79 088
280+100k 80 176
281+100k 81 352
282+100k 82 704
283+100k 83 408
284+100k 84 816
285+100k 85 632
286+100k 86 264
287+100k 87 528
288+100k 88 056
289+100k 89 112
290+100k 90 224
291+100k 91 448
292+100k 92 896
293+100k 93 792
294+100k 94 584
295+100k 95 168
296+100k 96 336
297+100k 97 672
298+100k 98 344
299+100k 99 688
2100+100k 0 376
2101+100k 1 752
2102+100k 2 504

末m位数循环

2的正幂的末m位数循环要对10m取模,循环周期是 4·5m-1, 始于 2m. (具体证明涉及到数论,超出了本文的范围)

Cycle Length for Number of Ending Digits (1 to 10)
mPeriod (4·5m-1)Starts with
1 4 21
2 20 22
3 100 23
4 500 24
5 2500 25
6 12500 26
7 62500 27
8 312500 28
9 1562500 29
10 7812500 210

周期增长飞快-指数级增长-所以无法列出m大于3的列表。

循环的嵌套(Nesting of Cycles)

对于末m位,m-1位,m-2位, …, 末1位的循环,可以看做是嵌套的,尽管它们的起始点是交错的。你只需将较小的起始数补零,就能让它们对齐。

例如,在长度是100的末三位循环中,包含了5次长度是20的末两位循环;每一个长度是20的末两位循环包含5次长度为4的最末位循环。你从8(需移动两位)开始观察就能发现最末位的规律,末两位的规律始于08(需移动一位),末三位的规律始于008(不需移位)。

下表标出了嵌套的循环(全部100行都被标记,因为只有100个2的幂-末三位的一个循环-被列出)。

技术分享

Nested 1-3 Digit Ending Patterns From 23 to 2102

使用PARI/GP探索末位循环

我使用PARI/GP 来进行上面的计算和验证。下面是三个例子:

  • 列出前20个末位是2的2的幂:
    ? for (i=0,19,print("2^",1+4*i,": ",2^(1+4*i)))
    2^1: 2
    2^5: 32
    2^9: 512
    2^13: 8192
    2^17: 131072
    2^21: 2097152
    2^25: 33554432
    2^29: 536870912
    2^33: 8589934592
    2^37: 137438953472
    2^41: 2199023255552
    2^45: 35184372088832
    2^49: 562949953421312
    2^53: 9007199254740992
    2^57: 144115188075855872
    2^61: 2305843009213693952
    2^65: 36893488147419103232
    2^69: 590295810358705651712
    2^73: 9444732965739290427392
    2^77: 151115727451828646838272
    
  • 列出末两位的循环( ‘%’ 号返回余数,等价于取模运算):
    ? for (i=2,21,print("2^",i," mod(100): ",2^i % 100))
    2^2 mod(100): 4
    2^3 mod(100): 8
    2^4 mod(100): 16
    2^5 mod(100): 32
    2^6 mod(100): 64
    2^7 mod(100): 28
    2^8 mod(100): 56
    2^9 mod(100): 12
    2^10 mod(100): 24
    2^11 mod(100): 48
    2^12 mod(100): 96
    2^13 mod(100): 92
    2^14 mod(100): 84
    2^15 mod(100): 68
    2^16 mod(100): 36
    2^17 mod(100): 72
    2^18 mod(100): 44
    2^19 mod(100): 88
    2^20 mod(100): 76
    2^21 mod(100): 52
    

    (单位的数字这里没有前补零)

  • 打印末位1到10位数的周期长度:
    ? for (i=1,10,print(i,": ",4*5^(i-1)))
    1: 4
    2: 20
    3: 100
    4: 500
    5: 2500
    6: 12500
    7: 62500
    8: 312500
    9: 1562500
    10: 7812500
    

2的正幂末尾数的模式

标签:

原文地址:http://www.cnblogs.com/sirlipeng/p/5391096.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!