码迷,mamicode.com
首页 > 其他好文 > 详细

Scrapy Learning笔记(四)- Scrapy双向爬取

时间:2016-04-15 13:36:22      阅读:1153      评论:0      收藏:0      [点我收藏+]

标签:

摘要:介绍了使用Scrapy进行双向爬取(对付分类信息网站)的方法。

所谓的双向爬取是指以下这种情况,我要对某个生活分类信息的网站进行数据爬取,譬如要爬取租房信息栏目,我在该栏目的索引页看到如下页面,此时我要爬取该索引页中的每个条目的详细信息(纵向爬取),然后在分页器里跳转到下一页(横向爬取),再爬取第二页中的每个条目的详细信息,如此循环,直至最后一个条目。

技术分享

这样来定义双向爬取:

  • 水平方向 – 从一个索引页到另一个索引页

  • 纯直方向 – 从一个索引页到条目详情页

 

在本节中,

提取索引页到下一个索引页的xpath为:‘//*[contains(@class,"next")]//@href‘

提取索引页到条目详情页的xpath为:‘//*[@itemprop="url"]/@href‘

manual.py文件的源代码地址:

https://github.com/Kylinlin/scrapybook/blob/master/ch03%2Fproperties%2Fproperties%2Fspiders%2Fmanual.py

 

把之前的basic.py文件复制为manual.py文件,并做以下修改:

  • 导入Request:from scrapy.http import Request

  • 修改spider的名字为manual

  • 更改starturls为‘http://web:9312/properties/index00000.html‘

  • 将原料的parse函数改名为parse_item,并新建一个parse函数,代码如下:

#本函数用于提取索引页中每个条目详情页的超链接,以及下一个索引页的超链接
def parse(self, response):
        # Get the next index URLs and yield Requests
        next_selector = response.xpath(//*[contains(@class,"next")]//@href)
        for url in next_selector.extract():
            yield Request(urlparse.urljoin(response.url, url))#Request()函数没有赋值给callback,就会默认回调函数就是parse函数,所以这个语句等价于
yield Request(urlparse.urljoin(response.url, url), callback=parse)

        # Get item URLs and yield Requests
        item_selector = response.xpath(//*[@itemprop="url"]/@href)
        for url in item_selector.extract():
            yield Request(urlparse.urljoin(response.url, url),
                          callback=self.parse_item)

如果直接运行manual,就会爬取全部的页面,而现在只是测试阶段,可以告诉spider在爬取一个特定数量的item之后就停止,通过参数:-s CLOSESPIDER_ITEMCOUNT=10

运行命令:$ scrapy crawl manual -s CLOSESPIDER_ITEMCOUNT=10

它的输出如下:

技术分享

 

spider的运行流程是这样的:首先对start_url中的url发起一个request,然后下载器返回一个response(该response包含了网页的源代码和其他信息),接着spider自动将response作为parse函数的参数并调用。

parse函数的运行流程是这样的:

1. 首先从该response中提取class属性中包含有next字符的标签(就是分页器里的“下一页”)的超链接,在第一次运行时是:‘index_00001.html‘。

2. 在第一个for循环里首先构建一个完整的url地址(’http://web:9312/scrapybook/properties/index_00001.html‘),把该url作为参数构建一个Request对象,并把该对象放入到一个队列中(此时该对象是队列的第一个元素)。

3. 继续在该respone中提取属性itemprop等于url字符的标签(每一个条目对应的详情页)的超链接(譬如:‘property_000000.html‘)。

4. 在第二个for循环里对提取到的url逐个构建完整的url地址(譬如:’http://web:9312/scrapybook/properties/ property_000000.html’),并使用该url作为参数构建一个Request对象,按顺序将对象放入到之前的队列中。

5. 此时的队列是这样的

Request(http://…index_00001.html)

Request(http://…property_000000.html)

Request(http://…property_000029.html)

6. 当把最后一个条目详情页的超链接(property_000029.html)放入队列后,调度器就开始处理这个队列,由后到前把队列的最后一个元素提取出来放入下载器中下载并把response传入到回调函数(parse_item)中处理,直至到了第一个元素(index_00001.html),因为没有指定回调函数,默认的回调函数是parse函数本身,此时就进入了步骤1,这次提取到的超链接是:‘index_00002.html‘,然后就这样循环下去。

这个parse函数的执行过程类似于这样:

next_requests = []
for url in...
    next_requests.append(Request(...))
for url in...
    next_requests.append(Request(...))
return next_requests

可以看到使用后进先出队列的最大好处是在处理一个索引页时马上就开始处理该索引页里的条目列表,而不用维持一个超长的队列,这样可以节省内存,有没有觉得上面的parse函数写得有些让人难以理解呢,其实可以换一种更加简单的方式,对付这种双向爬取的情况,可以使用crawl的模板。

首先在命令行里按照crawl的模板生成一个名为easy的spider

$ scrapy genspider -t crawl easy web

打开该文件

...
class EasySpider(CrawlSpider):
    name = easy
    allowed_domains = [web]
    start_urls = [http://www.web/]
    rules = (
        Rule(LinkExtractor(allow=rItems/), callback=parse_item, follow=True),
    )
    def parse_item(self, response):
        ...

可以看到自动生成了上面的那些代码,注意这个spider是继承了CrawlSpider类,而CrawlSpider类已经默认提供了parse函数的实现,所以我们并不需要再写parse函数,只需要配置rules变量即可

rules = (
    Rule(LinkExtractor(restrict_xpaths=//*[contains(@class,"next")])),
    Rule(LinkExtractor(restrict_xpaths=//*[@itemprop="url"]),
         callback=parse_item)
)

运行命令:$ scrapy crawl easy -s CLOSESPIDER_ITEMCOUNT=90

这个方法有以下不同之处:

  • 这两个xpath与之前使用的不同之处在于没有了a和href这两个约束字符,因为LinkExtrator是专门用来提取超链接的,所以会自动地提取标签中的a和href的值,当然可以通过修改LinkExtrator函数里的参数tags和attrs来提取其他标签或属性里的超链接。

  • 还要注意的是这里的callback的值是字符串,而不是函数的引用。

  • Rule()函数里设置了callback的值,spider就默认不会跟踪目标页里的其他超链接(意思是说,不会对这个已经爬取过的网页使用xpaths来提取信息,爬虫到这个页面就终止了)。如果设置了callback的值,也可以通过设置参数follow的值为True来进行跟踪,也可以在callback指定的函数里return/yield这些超链接。

Scrapy Learning笔记(四)- Scrapy双向爬取

标签:

原文地址:http://www.cnblogs.com/kylinlin/p/5394814.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!