码迷,mamicode.com
首页 > 其他好文 > 详细

网络最大流增广路模板(EK & Dinic)

时间:2014-07-29 14:20:08      阅读:232      评论:0      收藏:0      [点我收藏+]

标签:algorithm   图论   网络流   

EK算法:

int fir[maxn];
int u[maxm],v[maxm],cap[maxm],flow[maxm],nex[maxm];
int e_max;
int p[maxn],q[maxn],d[maxn];

void add_edge(int _u,int _v,int _w)
{
    int e;
    e=e_max++;
    u[e]=_u;v[e]=_v;cap[e]=_w;
    nex[e]=fir[u[e]];fir[u[e]]=e;
    e=e_max++;
    u[e]=_v;v[e]=_u;cap[e]=0;
    nex[e]=fir[u[e]];fir[u[e]]=e;
}

int max_flow(int s,int t)
{
    memset(flow,0,sizeof flow);
    int total_flow=0;

    for (;;)
    {
        memset(d,0,sizeof d);
        d[s]=INF;
        int f=0,r=0;
        q[0]=s;
        while (f<=r)
        {
            int _u=q[f++];
            for (int e=fir[_u];~e;e=nex[e])
            {
                if (!d[v[e]] && cap[e]>flow[e])
                {
                    q[++r]=v[e];
                    p[v[e]]=e;
                    d[v[e]]=min(d[u[e]],cap[e]-flow[e]);
                }
            }
        }

        if (d[t]==0) break;

        for (int e=p[t];;e=p[u[e]])
        {
            flow[e]+=d[t];
            flow[e^1]-=d[t];
            if (u[e]==s) break;
        }

        total_flow+=d[t];
    }

    return total_flow;
}


Dinic算法(效率远高于EK算法):

int fir[maxn];
int u[maxm],v[maxm],cap[maxm],flow[maxm],nex[maxm];
int e_max;
int iter[maxn],q[maxn],lv[maxn];

void add_edge(int _u,int _v,int _w)
{
    int e;
    e=e_max++;
    u[e]=_u;v[e]=_v;cap[e]=_w;
    nex[e]=fir[u[e]];fir[u[e]]=e;
    e=e_max++;
    u[e]=_v;v[e]=_u;cap[e]=0;
    nex[e]=fir[u[e]];fir[u[e]]=e;
}

void dinic_bfs(int s)
{
    int f,r;
    memset(lv,-1,sizeof lv);
    q[f=r=0]=s;
    lv[s]=0;
    while(f<=r)
    {
        int x=q[f++];
        for (int e=fir[x];~e;e=nex[e])
        {
            if (cap[e]>flow[e] && lv[v[e]]<0)
            {
                lv[v[e]]=lv[u[e]]+1;
                q[++r]=v[e];
            }
        }
    }
}

int dinic_dfs(int _u,int t,int _f)
{
    if (_u==t)  return _f;
    for (int &e=iter[_u];~e;e=nex[e])
    {
        if (cap[e]>flow[e] && lv[_u]<lv[v[e]])
        {
            int _d=dinic_dfs(v[e],t,min(_f,cap[e]-flow[e]));
            if (_d>0)
            {
                flow[e]+=_d;
                flow[e^1]-=_d;
                return _d;
            }
        }
    }

    return 0;
}

int max_flow(int s,int t)
{

    memset(flow,0,sizeof flow);
    int total_flow=0;

    for (;;)
    {
        dinic_bfs(s);
        if (lv[t]<0)    return total_flow;
        memcpy(iter,fir,sizeof iter);
        int _f;

        while ((_f=dinic_dfs(s,t,INF))>0)
            total_flow+=_f;
    }

    return total_flow;
}


网络最大流增广路模板(EK & Dinic),布布扣,bubuko.com

网络最大流增广路模板(EK & Dinic)

标签:algorithm   图论   网络流   

原文地址:http://blog.csdn.net/u012965890/article/details/38238923

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!