EK算法:
int fir[maxn]; int u[maxm],v[maxm],cap[maxm],flow[maxm],nex[maxm]; int e_max; int p[maxn],q[maxn],d[maxn]; void add_edge(int _u,int _v,int _w) { int e; e=e_max++; u[e]=_u;v[e]=_v;cap[e]=_w; nex[e]=fir[u[e]];fir[u[e]]=e; e=e_max++; u[e]=_v;v[e]=_u;cap[e]=0; nex[e]=fir[u[e]];fir[u[e]]=e; } int max_flow(int s,int t) { memset(flow,0,sizeof flow); int total_flow=0; for (;;) { memset(d,0,sizeof d); d[s]=INF; int f=0,r=0; q[0]=s; while (f<=r) { int _u=q[f++]; for (int e=fir[_u];~e;e=nex[e]) { if (!d[v[e]] && cap[e]>flow[e]) { q[++r]=v[e]; p[v[e]]=e; d[v[e]]=min(d[u[e]],cap[e]-flow[e]); } } } if (d[t]==0) break; for (int e=p[t];;e=p[u[e]]) { flow[e]+=d[t]; flow[e^1]-=d[t]; if (u[e]==s) break; } total_flow+=d[t]; } return total_flow; }
Dinic算法(效率远高于EK算法):
int fir[maxn]; int u[maxm],v[maxm],cap[maxm],flow[maxm],nex[maxm]; int e_max; int iter[maxn],q[maxn],lv[maxn]; void add_edge(int _u,int _v,int _w) { int e; e=e_max++; u[e]=_u;v[e]=_v;cap[e]=_w; nex[e]=fir[u[e]];fir[u[e]]=e; e=e_max++; u[e]=_v;v[e]=_u;cap[e]=0; nex[e]=fir[u[e]];fir[u[e]]=e; } void dinic_bfs(int s) { int f,r; memset(lv,-1,sizeof lv); q[f=r=0]=s; lv[s]=0; while(f<=r) { int x=q[f++]; for (int e=fir[x];~e;e=nex[e]) { if (cap[e]>flow[e] && lv[v[e]]<0) { lv[v[e]]=lv[u[e]]+1; q[++r]=v[e]; } } } } int dinic_dfs(int _u,int t,int _f) { if (_u==t) return _f; for (int &e=iter[_u];~e;e=nex[e]) { if (cap[e]>flow[e] && lv[_u]<lv[v[e]]) { int _d=dinic_dfs(v[e],t,min(_f,cap[e]-flow[e])); if (_d>0) { flow[e]+=_d; flow[e^1]-=_d; return _d; } } } return 0; } int max_flow(int s,int t) { memset(flow,0,sizeof flow); int total_flow=0; for (;;) { dinic_bfs(s); if (lv[t]<0) return total_flow; memcpy(iter,fir,sizeof iter); int _f; while ((_f=dinic_dfs(s,t,INF))>0) total_flow+=_f; } return total_flow; }
网络最大流增广路模板(EK & Dinic),布布扣,bubuko.com
原文地址:http://blog.csdn.net/u012965890/article/details/38238923