码迷,mamicode.com
首页 > 其他好文 > 详细

计算n阶乘中尾部零的个数

时间:2016-04-16 19:07:24      阅读:427      评论:0      收藏:0      [点我收藏+]

标签:

写在前面

本来觉得问题挺容易的,不打算记录,谁知道一不小心,还真没做出来。最终凭借“朴实”的算法思想解决了问题,但是其中的曲折还真是汗颜。科学的思维指导确实必不可少,“野路子”的朴素的战斗理论不论是效率还是后续的算法演进都经不起考验。

这里只是记录一下自己最近两天对此问题的一些想法,目前只能说是解决了问题,并且满足题目要求。据说问题来自《编程之美》,以后刷书本的时候看到原题,如果需要补充的话,再来更新。

And,开始吧~

正文

题目

设计一个算法,计算出n阶乘中尾部零的个数

样例
11! = 39916800,因此应该返回 2

挑战
O(logN)的时间复杂度

题目分析

先说结论,此问题大致有三种思路:第一种算出结果,然后查看末尾的0的个数,效果非常差;第二种,加法操作,从5开始,每次进5,然后判断,效果达不到O(logN);第三种,每次除5,多次之后结束。
详情如下。

重点分析在算法2和算法3,需要的可以直接跳到这部分查看。

算法1:最朴素

面对此问题,第一反应是直接计算结果:11!=39916800,然后设计程序判断末尾的0的个数,很简单就可以实现。
但是相应的会有很多的问题:
1、计算阶乘的开销
现在只是11的阶乘,都已经很大了,如果是5555550000000的阶乘呢?按照程序的计算结果,末尾会有1388887499996个0,计算开销很值得考虑。
2、溢出
按照上面的介绍,5555550000000的阶乘有1388887499996个0,那么可以推知阶乘的结果会是很大的一个整数,肯定会超出long类型的界限,结果会溢出。这样还要考虑处理溢出问题,又是另一个问题。
3、效率
算法2会涉及到效率问题,会发现即使是算法2也会出现计算时间超出要求的问题,那么更为“朴素”的算法1效率更是可想而知了。
因此,算法1,舍弃。

算法2:以5为迭代步数

算法2分析

仔细的考虑问题,会发现末尾出现的0是10或10的倍数相乘的结果,而10其实是5与偶数相乘。也就是,最终结果中末尾出现的0是5、10、15、20、25…自身或与偶数相乘之后的产生的。下面可以分为偶数和5的倍数分析。

首先考虑偶数。
考虑2的幂次项2、4、8…中的2的个数,发现2的幂指数的增长速度远比5的幂指数增长的快,更不用说其他的普通偶数6、12、14…。因此可以认为有足够的偶数与奇数形式的5的倍数相乘产生足够的0。所以我们后面只考虑5的倍数。

接着考虑5的倍数。

1、2、3、4、5、6、7、8、9、10、11...

其实1、2、3、4、6、7…都是可以不用考虑的,因此选择以5为迭代步数即可。
首先,这些数字都可以不用进行%5(对5取余数)运算,因此每次循环时可以直接将函数的count变量直接加1。其次,考虑25、125、625…等5的幂次项,因为他们每一个都可以在与偶数相乘之后产生多个0。因此,设置一个循环体,判断是多少幂次项,并将结果加进count
综上所述,可以编写代码如下:

算法2代码

public class Solution {

    /*
     * param n: As desciption return: An integer, denote the number of trailing
     * zeros in n!
     */
    public long trailingZeros(long n) {
        // write your code here
        long count = 0;
        long pwr = 25;
        for (long temp = 5; temp <= n; temp+=5) {
            // for循环内部的temp都是5的倍数,因此首先进行+1操作
            count++;
            pwr = 25;
            // 判断是不是25、125、625...的倍数,并根据每次pwr的变化进行+1操作
            while (temp % pwr == 0) {
                count++;
                pwr *= 5;
            }
        }
        return count;
    }
}

代码很简单,不再解释。
但是效率很差,分析发现代码的时间复杂度实际是O(N/5)~=O(N),达不到要求的O(logN)。
算法2虽然可以解决问题,但考虑执行效率,算法2应该舍弃。

算法3:科学思想

反思&对比

这个算法真的是感触很深,对平时很多习以为常的公式、道理有了非常直观的认识,因此对自己的冲击很大,也促进了思考的进步。

提交算法2的代码,发现前面的简单测试都能通过,但是数值5555550000000测试失败。特别是实现了时间复杂度O(logN)的算法3之后,才发现两者时间开销差别真的是很大。

重新分析

1234567891011...

1、分析上面的数列可知,每5个数中会出现一个可以产生结果中0的数字。把这些数字抽取出来是:

...5...10...15...20...25...

这些数字其实是都能满足5*k的数字,是5的倍数。统计一下他们的数量:n1=N/5。比如如果是101,则101之前应该是5,10,15,20,...,95,100101/5=20个数字满足要求。

整除操作满足上面的数量统计要求。

2、将1中的这些数字化成5*(1、2、3、4、5、...)的形式,内部的1、2、3、4、5、...又满足上面的分析:每5个数字有一个是5的倍数。抽取为:

...25...50...75...100...125...

而这些数字都是25的倍数(5的2次幂的倍数),自然也都满足5*k的要求。
这些数字是25、50、75、100、125、...=5*(5、10、15、20、25、...)=5*5*(1、2、3、4、5、...),内部的1、2、3、4、5、...又满足上面的分析,因此后续的操作重复上述步骤即可。
统计一下第二次中满足条件的数字数量:n2=N/5/5101/25=(101/5)/5=4
因为25、50、75、100、125、...它们都满足相乘后产生至少两个0,在第一次5*k分析中已经统计过一次。对于N=101,是20。因此此处的5*5*k只要统计一次4即可,不需要根据25是5的二次幂统计两次。
后面的125,250,...等乘积为1000的可以为结果贡献3个0的数字,只要在5*5*k的基础上再统计一次n3=((N/5)/5)/5即可。
技术分享

3、第三次
其实到这里已经不用再写,规律已经很清楚了。对于例子N=101,只要根据规律进行101/125=((101/5)/5)/5=4/5=0,退出统计。因此最终结果是20+4=24。计算结束。

算法3代码

下面编写打码实现上面的思想。

public class Solution {

    /*
     * param n: As desciption return: An integer, denote the number of trailing
     * zeros in n!
     */
    public long trailingZeros(long n) {
        // write your code here
        long count = 0;
        long temp=n/5;
        while (temp!=0) {
            count+=temp;
            temp/=5;
        }
        return count;
    }
}

代码分析:
算法中每次循环均有除以5的操作,也就是每次都会将所要处理的数据量缩小至上一次的1/5,容易推知时间复杂度为O(logN)。

至此,问题解决。

小结

从最终的代码来看,问题是挺简单的。之所以折腾这么久都没有切入要害,直接做到真正的时间复杂度为O(logN)的效果,个人觉得是因为从分析题目的时候就没有真正理解O(logN)的真正含义。
类似于二叉搜索树,从根节点开始比较,比根节点小则与左子树比较,比根节点大则与右子树比较,相等或到达叶子节点则退出。如此循环迭代。
每次判断后,下一次可搜索的数据量均为上一次的1/2,如此循环复杂度为O(logN)。

反思

遇到错误和不足就要反思,吸取教训。正视自己的缺点。

下面是个人吐槽时间,吃瓜子的观众可以有序退场了。

应该来讲,本题的最终目的是要做到O(logN)。分析题目的时候从O(logN)着手分析可能会是更好的方法。从科学的、有章可循的理论出发,作为指导思想,结合之前的例子(二叉搜索树),举一反三,解决本问题不是难事。
但是反过来,采用“朴素”方法,依靠个人经验,观察算法规律,然后解决问题。一个不行再去观察思考尝试下一种方法,虽然也是一种解决问题的思路,但如果想要在此基础上做到有章可循的逐步演进,怕是困难得多。
更何况如果观察不出规律呢?

理论&实践

先分析理论然后落实到实践,还是先动手做,再结合/总结升华出理论,值得推敲。
技术分享
理性思考有助于身体健康,切记切记。与君共勉。

计算n阶乘中尾部零的个数

标签:

原文地址:http://blog.csdn.net/surp2011/article/details/51168272

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!