标签:des style http os io for div ar
Description
Input
Output
Sample Input
3 8 4 7 4 8
Sample Output
6 2 1
题意:n个人排队,f表示女,m表示男,形成的2^n个序列中,有多少个序列不包含子串‘fmf’和‘fff’.
思路:用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1);
如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是
mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4)
所以f(n)=f(n-1)+f(n-3)+f(n-4),为了达到效率的要求我们应用矩阵快速幂
构造一个矩阵:借用一张图来表达
写出一次相乘的矩阵结果是: f(n-1)+f(n-3)+f(n-4)
f(n-1)
f(n-2)
f(n-3), 那么就可以递推出结果是在矩阵的第一项
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const int maxn = 4; struct Matrix { int v[maxn][maxn]; Matrix() { memset(v, 0, sizeof(v)); } }; int n, m; Matrix Mul(Matrix a, Matrix b) { Matrix c; for (int i = 0; i < maxn; i++) for (int j = 0; j < maxn; j++) for (int k = 0; k < maxn; k++) c.v[i][j] = (c.v[i][j]+a.v[i][k]*b.v[k][j])%m; return c; } Matrix powMul(Matrix a, int k) { Matrix tmp; for (int i = 0; i < maxn; i++) tmp.v[i][i] = 1; while (k) { if (k & 1) tmp = Mul(a, tmp); k >>= 1; a = Mul(a, a); } return tmp; } int main() { Matrix a, b, c; a.v[0][0] = 9; a.v[1][0] = 6; a.v[2][0] = 4; a.v[3][0] = 2; b.v[0][0] = b.v[0][2] = b.v[0][3] = b.v[1][0] = b.v[2][1] = b.v[3][2] = 1; while (scanf("%d%d", &n, &m) != EOF) { if (n <= 4) { if (n == 0) printf("0\n"); else printf("%d\n", a.v[4-n][0]%m); } else { c = powMul(b, n-4); c = Mul(c, a); printf("%d\n", c.v[0][0]%m); } } return 0; }
HDU - 2604 Queuing (矩阵快速幂),布布扣,bubuko.com
标签:des style http os io for div ar
原文地址:http://blog.csdn.net/u011345136/article/details/38235169