标签:
1 2 107
0
/************************************************************************/
附上该题对应的中文题
Rivendell非常神,喜欢研究奇怪的问题. 今天他发现了一个有趣的问题.找到一条线段x+y=q,令它和坐标轴在第一象限围成了一个三角形,然后画线连接了坐标原点和线段上坐标为整数的格点. 请你找一找有多少点在三角形的内部且不是线段上的点,并将这个个数对P取模后告诉他.
第一行一个数T,为测试数据组数. 接下来每一行两个数q,P,意义如题目中所示. q是质数且q≤10?18??,1≤P≤10?18??,1≤T≤10.
对每组数据,输出点的个数模P后的值.
1 2 107
0
出题人的解题思路:
考虑一条以(0,0)为起点,(x,y)为终点的线段上格点的个数(不包含端点时),一定是gcd(x,y)?1,这个很显然吧.
然后整个网格图范围内的格点数目是?2??q?(q?1)??.
所以答案就是?2??q?(q?1)??? 所有线段上的格点的个数.
因为gcd(a,b)=gcd(a,b?a) (b>a),所以gcd(x,y)=gcd(x,p?x)=gcd(x,p),p是质数,所以gcd(x,y)=1,所以线段上都没有格点,所以答案就是?2??q?(q?1)??.
/*Sherlock and Watson and Adler*/ /* +,-,*,/,% 可直接使用. CIN读入 bignum数据类型 */ #include<iostream> #include<string.h> #include<stdio.h> #include<iostream> using namespace std; #define DIGIT 4 #define DEPTH 10000 #define MAX 100 typedef int bignum_t[MAX+1]; int read(bignum_t a,istream& is=cin){ char buf[MAX*DIGIT+1],ch; int i,j; memset((void*)a,0,sizeof(bignum_t)); if (!(is>>buf)) return 0; for (a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--) ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch; for (a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0'); for (i=1;i<=a[0];i++) for (a[i]=0,j=0;j<DIGIT;j++) a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0'; for (;!a[a[0]]&&a[0]>1;a[0]--); return 1; } void write(const bignum_t a,ostream& os=cout){ int i,j; for (os<<a[i=a[0]],i--;i;i--) for (j=DEPTH/10;j;j/=10) os<<a[i]/j%10; } int comp(const bignum_t a,const bignum_t b){ int i; if (a[0]!=b[0]) return a[0]-b[0]; for (i=a[0];i;i--) if (a[i]!=b[i]) return a[i]-b[i]; return 0; } int comp(const bignum_t a,const int b){ int c[12]={1}; for (c[1]=b;c[c[0]]>=DEPTH;c[c[0]+1]=c[c[0]]/DEPTH,c[c[0]]%=DEPTH,c[0]++); return comp(a,c); } int comp(const bignum_t a,const int c,const int d,const bignum_t b){ int i,t=0,O=-DEPTH*2; if (b[0]-a[0]<d&&c) return 1; for (i=b[0];i>d;i--){ t=t*DEPTH+a[i-d]*c-b[i]; if (t>0) return 1; if (t<O) return 0; } for (i=d;i;i--){ t=t*DEPTH-b[i]; if (t>0) return 1; if (t<O) return 0; } return t>0; } void add(bignum_t a,const bignum_t b){ int i; for (i=1;i<=b[0];i++) if ((a[i]+=b[i])>=DEPTH) a[i]-=DEPTH,a[i+1]++; if (b[0]>=a[0]) a[0]=b[0]; else for (;a[i]>=DEPTH&&i<a[0];a[i]-=DEPTH,i++,a[i]++); a[0]+=(a[a[0]+1]>0); } void add(bignum_t a,const int b){ int i=1; for (a[1]+=b;a[i]>=DEPTH&&i<a[0];a[i+1]+=a[i]/DEPTH,a[i]%=DEPTH,i++); for (;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++); } void sub(bignum_t a,const bignum_t b){ int i; for (i=1;i<=b[0];i++) if ((a[i]-=b[i])<0) a[i+1]--,a[i]+=DEPTH; for (;a[i]<0;a[i]+=DEPTH,i++,a[i]--); for (;!a[a[0]]&&a[0]>1;a[0]--); } void sub(bignum_t a,const int b){ int i=1; for (a[1]-=b;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++); for (;!a[a[0]]&&a[0]>1;a[0]--); } void sub(bignum_t a,const bignum_t b,const int c,const int d){ int i,O=b[0]+d; for (i=1+d;i<=O;i++) if ((a[i]-=b[i-d]*c)<0) a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH; for (;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++); for (;!a[a[0]]&&a[0]>1;a[0]--); } void mul(bignum_t c,const bignum_t a,const bignum_t b){ int i,j; memset((void*)c,0,sizeof(bignum_t)); for (c[0]=a[0]+b[0]-1,i=1;i<=a[0];i++) for (j=1;j<=b[0];j++) if ((c[i+j-1]+=a[i]*b[j])>=DEPTH) c[i+j]+=c[i+j-1]/DEPTH,c[i+j-1]%=DEPTH; for (c[0]+=(c[c[0]+1]>0);!c[c[0]]&&c[0]>1;c[0]--); } void mul(bignum_t a,const int b){ int i; for (a[1]*=b,i=2;i<=a[0];i++){ a[i]*=b; if (a[i-1]>=DEPTH) a[i]+=a[i-1]/DEPTH,a[i-1]%=DEPTH; } for (;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++); for (;!a[a[0]]&&a[0]>1;a[0]--); } void mul(bignum_t b,const bignum_t a,const int c,const int d){ int i; memset((void*)b,0,sizeof(bignum_t)); for (b[0]=a[0]+d,i=d+1;i<=b[0];i++) if ((b[i]+=a[i-d]*c)>=DEPTH) b[i+1]+=b[i]/DEPTH,b[i]%=DEPTH; for (;b[b[0]+1];b[0]++,b[b[0]+1]=b[b[0]]/DEPTH,b[b[0]]%=DEPTH); for (;!b[b[0]]&&b[0]>1;b[0]--); } void div(bignum_t c,bignum_t a,const bignum_t b){ int h,l,m,i; memset((void*)c,0,sizeof(bignum_t)); c[0]=(b[0]<a[0]+1)?(a[0]-b[0]+2):1; for (i=c[0];i;sub(a,b,c[i]=m,i-1),i--) for (h=DEPTH-1,l=0,m=(h+l+1)>>1;h>l;m=(h+l+1)>>1) if (comp(b,m,i-1,a)) h=m-1; else l=m; for (;!c[c[0]]&&c[0]>1;c[0]--); c[0]=c[0]>1?c[0]:1; } void div(bignum_t a,const int b,int& c){ int i; for (c=0,i=a[0];i;c=c*DEPTH+a[i],a[i]=c/b,c%=b,i--); for (;!a[a[0]]&&a[0]>1;a[0]--); } void sqrt(bignum_t b,bignum_t a){ int h,l,m,i; memset((void*)b,0,sizeof(bignum_t)); for (i=b[0]=(a[0]+1)>>1;i;sub(a,b,m,i-1),b[i]+=m,i--) for (h=DEPTH-1,l=0,b[i]=m=(h+l+1)>>1;h>l;b[i]=m=(h+l+1)>>1) if (comp(b,m,i-1,a)) h=m-1; else l=m; for (;!b[b[0]]&&b[0]>1;b[0]--); for (i=1;i<=b[0];b[i++]>>=1); } int length(const bignum_t a){ int t,ret; for (ret=(a[0]-1)*DIGIT,t=a[a[0]];t;t/=10,ret++); return ret>0?ret:1; } int digit(const bignum_t a,const int b){ int i,ret; for (ret=a[(b-1)/DIGIT+1],i=(b-1)%DIGIT;i;ret/=10,i--); return ret%10; } int zeronum(const bignum_t a){ int ret,t; for (ret=0;!a[ret+1];ret++); for (t=a[ret+1],ret*=DIGIT;!(t%10);t/=10,ret++); return ret; } void comp(int* a,const int l,const int h,const int d){ int i,j,t; for (i=l;i<=h;i++) for (t=i,j=2;t>1;j++) while (!(t%j)) a[j]+=d,t/=j; } void convert(int* a,const int h,bignum_t b){ int i,j,t=1; memset(b,0,sizeof(bignum_t)); for (b[0]=b[1]=1,i=2;i<=h;i++) if (a[i]) for (j=a[i];j;t*=i,j--) if (t*i>DEPTH) mul(b,t),t=1; mul(b,t); } void combination(bignum_t a,int m,int n){ int* t=new int[m+1]; memset((void*)t,0,sizeof(int)*(m+1)); comp(t,n+1,m,1); comp(t,2,m-n,-1); convert(t,m,a); delete []t; } void permutation(bignum_t a,int m,int n){ int i,t=1; memset(a,0,sizeof(bignum_t)); a[0]=a[1]=1; for (i=m-n+1;i<=m;t*=i++) if (t*i>DEPTH) mul(a,t),t=1; mul(a,t); } #define SGN(x) ((x)>0?1:((x)<0?-1:0)) #define ABS(x) ((x)>0?(x):-(x)) int read(bignum_t a,int &sgn,istream& is=cin){ char str[MAX*DIGIT+2],ch,*buf; int i,j; memset((void*)a,0,sizeof(bignum_t)); if (!(is>>str)) return 0; buf=str,sgn=1; if (*buf=='-') sgn=-1,buf++; for (a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--) ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch; for (a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0'); for (i=1;i<=a[0];i++) for (a[i]=0,j=0;j<DIGIT;j++) a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0'; for (;!a[a[0]]&&a[0]>1;a[0]--); if (a[0]==1&&!a[1]) sgn=0; return 1; } struct bignum{ bignum_t num; int sgn; public: inline bignum(){memset(num,0,sizeof(bignum_t));num[0]=1;sgn=0;} //inline int operator!(){return num[0]==1&&!num[1];} inline bignum& operator=(const bignum& a){memcpy(num,a.num,sizeof(bignum_t));sgn=a.sgn;return *this;} inline bignum& operator=(const int a){memset(num,0,sizeof(bignum_t));num[0]=1;sgn=SGN(a);add(num,sgn*a);return *this;}; inline bignum& operator+=(const bignum& a){if(sgn==a.sgn)add(num,a.num);else if(sgn&&a.sgn){int ret=comp(num,a.num);if(ret>0)sub(num,a.num);else if(ret<0){bignum_t t; memcpy(t,num,sizeof(bignum_t));memcpy(num,a.num,sizeof(bignum_t));sub(num,t);sgn=a.sgn;}else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0;}else if(!sgn)memcpy(num,a.num,sizeof(bignum_t)),sgn=a.sgn;return *this;} inline bignum& operator+=(const int a){if(sgn*a>0)add(num,ABS(a));else if(sgn&&a){int ret=comp(num,ABS(a));if(ret>0)sub(num,ABS(a));else if(ret<0){bignum_t t; memcpy(t,num,sizeof(bignum_t));memset(num,0,sizeof(bignum_t));num[0]=1;add(num,ABS(a));sgn=-sgn;sub(num,t);}else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0;}else if(!sgn)sgn=SGN(a),add(num,ABS(a));return *this;} inline bignum operator+(const bignum& a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));ret.sgn=sgn;ret+=a;return ret;} inline bignum operator+(const int a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));ret.sgn=sgn;ret+=a;return ret;} inline bignum& operator-=(const bignum& a){if(sgn*a.sgn<0)add(num,a.num);else if(sgn&&a.sgn){int ret=comp(num,a.num);if(ret>0)sub(num,a.num);else if(ret<0){bignum_t t; memcpy(t,num,sizeof(bignum_t));memcpy(num,a.num,sizeof(bignum_t));sub(num,t);sgn=-sgn;}else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0;}else if(!sgn)add(num,a.num),sgn=-a.sgn;return *this;} inline bignum& operator-=(const int a){if(sgn*a<0)add(num,ABS(a));else if(sgn&&a){int ret=comp(num,ABS(a));if(ret>0)sub(num,ABS(a));else if(ret<0){bignum_t t; memcpy(t,num,sizeof(bignum_t));memset(num,0,sizeof(bignum_t));num[0]=1;add(num,ABS(a));sub(num,t);sgn=-sgn;}else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0;}else if(!sgn)sgn=-SGN(a),add(num,ABS(a));return *this;} inline bignum operator-(const bignum& a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));ret.sgn=sgn;ret-=a;return ret;} inline bignum operator-(const int a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));ret.sgn=sgn;ret-=a;return ret;} inline bignum& operator*=(const bignum& a){bignum_t t;mul(t,num,a.num);memcpy(num,t,sizeof(bignum_t));sgn*=a.sgn;return *this;} inline bignum& operator*=(const int a){mul(num,ABS(a));sgn*=SGN(a);return *this;} inline bignum operator*(const bignum& a){bignum ret;mul(ret.num,num,a.num);ret.sgn=sgn*a.sgn;return ret;} inline bignum operator*(const int a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));mul(ret.num,ABS(a));ret.sgn=sgn*SGN(a);return ret;} inline bignum& operator/=(const bignum& a){bignum_t t;div(t,num,a.num);memcpy(num,t,sizeof(bignum_t));sgn=(num[0]==1&&!num[1])?0:sgn*a.sgn;return *this;} inline bignum& operator/=(const int a){int t;div(num,ABS(a),t);sgn=(num[0]==1&&!num[1])?0:sgn*SGN(a);return *this;} inline bignum operator/(const bignum& a){bignum ret;bignum_t t;memcpy(t,num,sizeof(bignum_t));div(ret.num,t,a.num);ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*a.sgn;return ret;} inline bignum operator/(const int a){bignum ret;int t;memcpy(ret.num,num,sizeof(bignum_t));div(ret.num,ABS(a),t);ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*SGN(a);return ret;} inline bignum& operator%=(const bignum& a){bignum_t t;div(t,num,a.num);if (num[0]==1&&!num[1])sgn=0;return *this;} inline int operator%=(const int a){int t;div(num,ABS(a),t);memset(num,0,sizeof(bignum_t));num[0]=1;add(num,t);return t;} inline bignum operator%(const bignum& a){bignum ret;bignum_t t;memcpy(ret.num,num,sizeof(bignum_t));div(t,ret.num,a.num);ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn;return ret;} inline int operator%(const int a){bignum ret;int t;memcpy(ret.num,num,sizeof(bignum_t));div(ret.num,ABS(a),t);memset(ret.num,0,sizeof(bignum_t));ret.num[0]=1;add(ret.num,t);return t;} inline bignum& operator++(){*this+=1;return *this;} inline bignum& operator--(){*this-=1;return *this;}; inline int operator>(const bignum& a){return sgn>0?(a.sgn>0?comp(num,a.num)>0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<0:0):a.sgn<0);} inline int operator>(const int a){return sgn>0?(a>0?comp(num,a)>0:1):(sgn<0?(a<0?comp(num,-a)<0:0):a<0);} inline int operator>=(const bignum& a){return sgn>0?(a.sgn>0?comp(num,a.num)>=0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<=0:0):a.sgn<=0);} inline int operator>=(const int a){return sgn>0?(a>0?comp(num,a)>=0:1):(sgn<0?(a<0?comp(num,-a)<=0:0):a<=0);} inline int operator<(const bignum& a){return sgn<0?(a.sgn<0?comp(num,a.num)>0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<0:0):a.sgn>0);} inline int operator<(const int a){return sgn<0?(a<0?comp(num,-a)>0:1):(sgn>0?(a>0?comp(num,a)<0:0):a>0);} inline int operator<=(const bignum& a){return sgn<0?(a.sgn<0?comp(num,a.num)>=0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<=0:0):a.sgn>=0);} inline int operator<=(const int a){return sgn<0?(a<0?comp(num,-a)>=0:1):(sgn>0?(a>0?comp(num,a)<=0:0):a>=0);} inline int operator==(const bignum& a){return (sgn==a.sgn)?!comp(num,a.num):0;} inline int operator==(const int a){return (sgn*a>=0)?!comp(num,ABS(a)):0;} inline int operator!=(const bignum& a){return (sgn==a.sgn)?comp(num,a.num):1;} inline int operator!=(const int a){return (sgn*a>=0)?comp(num,ABS(a)):1;} inline int operator[](const int a){return digit(num,a);} friend inline istream& operator>>(istream& is,bignum& a){read(a.num,a.sgn,is);return is;} friend inline ostream& operator<<(ostream& os,const bignum& a){if(a.sgn<0)os<<'-';write(a.num,os);return os;} friend inline bignum sqrt(const bignum& a){bignum ret;bignum_t t;memcpy(t,a.num,sizeof(bignum_t));sqrt(ret.num,t);ret.sgn=ret.num[0]!=1||ret.num[1];return ret;} friend inline bignum sqrt(const bignum& a,bignum& b){bignum ret;memcpy(b.num,a.num,sizeof(bignum_t));sqrt(ret.num,b.num);ret.sgn=ret.num[0]!=1||ret.num[1];b.sgn=b.num[0]!=1||ret.num[1];return ret;} inline int length(){return ::length(num);} inline int zeronum(){return ::zeronum(num);} inline bignum C(const int m,const int n){combination(num,m,n);sgn=1;return *this;} inline bignum P(const int m,const int n){permutation(num,m,n);sgn=1;return *this;} }; bignum q,P; int main() { int t; scanf("%d",&t); while(t--) { cin>>q>>P; if(q<3) puts("0"); else cout<<((q-1)*(q-2)/2)%P<<endl; } return 0; }菜鸟成长记
HDU 5666 Segment——BestCoder Round #80
标签:
原文地址:http://blog.csdn.net/queuelovestack/article/details/51170666