码迷,mamicode.com
首页 > 其他好文 > 详细

对称矩阵 压缩存储

时间:2016-04-19 00:42:49      阅读:277      评论:0      收藏:0      [点我收藏+]

标签:c++

对称矩阵及对称矩阵的压缩存储


设一个N*N的方阵A,A中任意元素Aij,当且仅当Aij == Aji(0 <= i <= N-1 && 0 <= j <= N-1),则矩阵A是对称矩阵。以矩阵的对角线为分隔,分为上三角和下三角。


压缩存储称矩阵存储时只需要存储上三角/下三角的数据,所以最多存储n(n+1)/2个数据。

对称矩阵和压缩存储的对应关系:下三角存储i>=j,  SymmetricMatrix[i][j] == Array[i*(i+1)/2+j]


技术分享



#define _CRT_SECURE_NO_WARNINGS 1

#include <iostream>

using namespace std;

/**************

 * 对称矩阵

 * 压缩存储:把下三角矩阵存储在一维数组中

 * (二维对称矩阵 下三角阵 在一维数组中 坐标为 i * (i + 1) / 2 + j

 *

 ****/


template<class T>

class SymmetricMatrix

{

public:

SymmetricMatrix(T* a, size_t n);

~SymmetricMatrix();

T& Access(size_t i, size_t j);

void Display() const;

protected:

size_t _size;

T* _a;

size_t _n; //维数

};


template<class T>

SymmetricMatrix<T>::SymmetricMatrix(T* a, size_t n)

:_size((n * (n + 1))/2) // 注意数据定义顺序

,_a(new T[_size])

,_n(n)

{

size_t index = 0;


for (size_t i = 0; i < n; i++)

{

for (size_t j = 0; j < n; j++)

{

if (j <= i)

{

_a[index++] = a[i * n + j];

}

else

{

break; // 存下三角

}

}

}

}


template<class T>

void SymmetricMatrix<T>::Display() const

{

for (size_t i = 0; i < _n; ++i)

{

for (size_t j = 0; j < _n; j++)

{

if (j <= i)

{

cout<<_a[i * (i + 1) / 2 + j]<<" ";

}

else

{

cout<<_a[j * (j + 1) / 2 + i]<<" "; // 巧妙

}

}

cout<<endl;

}

}


template<class T>

SymmetricMatrix<T>::~SymmetricMatrix()

{

if (_a)

{

delete[] _a;

_n = 0;

_size = 0;

}

}


template<class T>

T& Access(size_t i, size_t j)

{

if (j > i)

{

swap(i, j);

}


return _a[i * (i + 1) / 2 + j];

}


void test_Sym()

{

int a [5][5]=

{

{0,1,2,3,4},

{1,0,1,2,3},

{2,1,0,1,2},

{3,2,1,0,1},

{4,3,2,1,0},

};


SymmetricMatrix<int> s((int*)a, 5);

s.Display();


}


int main()

{

test_Sym();

return 0;

}


本文出自 “城市猎人” 博客,请务必保留此出处http://alick.blog.51cto.com/10786574/1765162

对称矩阵 压缩存储

标签:c++

原文地址:http://alick.blog.51cto.com/10786574/1765162

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!