标签:
一、准备测试数据
1、在本地Linux系统/var/lib/hadoop-hdfs/file/路径下准备两个文件file1.txt和file2.txt,文件列表及各自内容如下图所示:
2、在hdfs中,准备/input路径,并上传两个文件file1.txt和file2.txt,如下图所示:
二、编写代码,封装Jar包并上传至linux
将代码封装成TestMapReduce.jar,并上传至linux的/usr/local路径下,如下图所示:
三、运行命令
执行命令如下:hadoop jar /usr/local/TestMapReduce.jar com.jngreen.mapreduce.test.WordCount /input/file1.txt /input/file2.txt /output/output
命令执行过程截图如下:
四、查看运行结果
查看hdfs输出路径/output下的结果,如下图所示:
运行结果为Hello 4、Hadoop 1、Man 1、Boy 1、Word 1,完全正确!
五、WordCount展示
源码如下:
import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { // TokenizerMapper作为Map阶段,需要继承Mapper,并重写map()函数 public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { // 用StringTokenizer作为分词器,对value进行分词 StringTokenizer itr = new StringTokenizer(value.toString()); // 遍历分词后结果 while (itr.hasMoreTokens()) { // 将String设置入Text类型word word.set(itr.nextToken()); // 将(word,1),即(Text,IntWritable)写入上下文context,供后续Reduce阶段使用 context.write(word, one); } } } // IntSumReducer作为Reduce阶段,需要继承Reducer,并重写reduce()函数 public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; // 遍历map阶段输出结果中的values中每个val,累加至sum for (IntWritable val : values) { sum += val.get(); } // 将sum设置入IntWritable类型result result.set(sum); // 通过上下文context的write()方法,输出结果(key, result),即(Text,IntWritable) context.write(key, result); } } public static void main(String[] args) throws Exception { // 加载hadoop配置 Configuration conf = new Configuration(); // 校验命令行输入参数 if (args.length < 2) { System.err.println("Usage: wordcount <in> [<in>...] <out>"); System.exit(2); } // 构造一个Job实例job,并命名为"word count" Job job = new Job(conf, "word count"); // 设置jar job.setJarByClass(WordCount.class); // 设置Mapper job.setMapperClass(TokenizerMapper.class); // 设置Combiner job.setCombinerClass(IntSumReducer.class); // 设置Reducer job.setReducerClass(IntSumReducer.class); // 设置OutputKey job.setOutputKeyClass(Text.class); // 设置OutputValue job.setOutputValueClass(IntWritable.class); // 添加输入路径 for (int i = 0; i < args.length - 1; ++i) { FileInputFormat.addInputPath(job, new Path(args[i])); } // 添加输出路径 FileOutputFormat.setOutputPath(job, new Path(args[args.length - 1])); // 等待作业job运行完成并退出 System.exit(job.waitForCompletion(true) ? 0 : 1); } }
Hadoop2.6.0版本MapReudce示例之WordCount
标签:
原文地址:http://blog.csdn.net/lipeng_bigdata/article/details/51180032