标签:
1.模型
提升方法实际采用加法模型(即基函数的线性组合)与前向分布算法。以决策树为基函数的提升方法称为提升树(boosting tree)。对分类问题决策树是二叉分类树,对回归问题决策树是二叉决策树。提升树模型可以表示为决策树的加法模型:
其中,表示决策树;
为决策树的参数;M为树的个数
2.学习过程
回归问题提升树使用以下前向分布算法:
在前向分布算法的第m步,给定当前模型,需求解
得到,即第m棵树的参数
当采用平方误差损失函数时,
其损失变为
其中,是当前模型拟合数据的残差(residual)。对于平方损失函数,拟合的就是残差;对于一般损失函数(梯度下降),拟合的就是残差的近似值
3.算法
输入:训练数据集
输出:提升树
(1)初始化
(2)对m = 1,2,…,M
(3)得到回归问题提升树
仔细观察下上面的算法过程,我们可以看到GBDT很难实现并行
附sklearn中GBDT文档 地址
参考
(1)统计学习方法
标签:
原文地址:http://blog.csdn.net/a819825294/article/details/51188740