码迷,mamicode.com
首页 > 其他好文 > 详细

CNN Notes [001]

时间:2016-04-21 16:40:45      阅读:207      评论:0      收藏:0      [点我收藏+]

标签:

CNN卷积神经网络关键点:

{1} 非全连接的网络(稀疏网络),相比于BP神经网络(全连接的网络),当然CNN也可以有一部分层是全连接层。

{2} 权重共享(权重系数相同),也即是卷积核相同(与位置无关),1个卷积核。1个卷积核对应一个特征映射,进行一种特征提取,得到
一个特征提取图,当然一层可以布置多个卷积核。

{3} 卷积过程就是求权重和过程,权重矩阵就是卷积核。

{4} CNN是一种监督学习算法。

{5} CNN层可以分为特征提取层(卷积层)、特征计算层(采样层)、输入层、全连接层、输出层。

{6} CNN具有位置、尺度、形变不变性。

{7} CNN算法的关键是训练过程,也就是学习过程。

{8} 需要训练的参数,
卷积层:(1)卷积核权重系数,(2)卷积核偏移量,
采样层:(1)采样权重系数,(2)采样偏移量,

{9} CNN算法最初是针对二维手写体图像设计的。

{10} CNN训练的并行学习策略,主要体现在同一层不同卷积核之间独立并行?还是其他策略?

 

技术分享

 

CNN Notes [001]

标签:

原文地址:http://www.cnblogs.com/courins/p/5417492.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!