标签:
在介绍bootloader嵌,先简要介绍一下汇编的相关知识!为后边的学习做铺垫!大学里面学习过汇编,之前汇编部分的视频也是一点一点的跟着国嵌的视频把代码撸出来一步一步的调试!相对学习起来还是比较容易的!比数据结构和算法简单的多了。
汇编语言介绍这一部分暂时就不写笔记了!写bootloader后边会用到比较多,这里只简单的挑一些重要的介绍一下。
ARM汇编分类:
1. ARM标准汇编:使用ARM公司的汇编器,适合在windows平台下使用,
2. GNU汇编:适合于GNU交叉编译工具链中的汇编器,适合Linux开发平台
bootloader在最开始的时候,并没有构建运行C语言的环境,所以一开始都是用汇编代码写的,到后边等构建好了C代码环境,就可以使用C来写了,这里汇编先只简要介绍一下!
汇编程序框架:(后边的bootloader也是按照这个格式写的)
.section .data
<初始化的数据>
.section .bss
<未初始化的数据>
.section .text
.global _start
_start:
<汇编代码>
1. ARM汇编指令分类学习(指令比较多):
2. ARM伪指令
伪指令本身并没有所对应的机器码,本身只是在编译的时候起作用,或者转化为其他的实际指令来运行
3. 协处理器访问指令:(这个比较重要,在bootloader中这个一般在关键点的地方用的很多)
下边来开始慢慢一步一步来记录bootloader从0到有,从有到精通!不想当将军的士兵不是好厨师!
bootloader设计蓝图大纲
1. bootloader 的作用 (类似于windows的bios程序,主要做一些硬件的初始化工作)
2. bootloader 设计方法 (模仿)
3. bootloader代码工程建立 (通过sourceInsight )
ARM处理器启动流程:(这个还是datasheet说了算)
1. 启动方式:
2. 地址布局:
3. 启动流程:
这里BL0里面芯片厂商已经给我们把程序固化好了!这里我们需要完成BL1和BL2的部分!
这是uboot源码里面顶层Makefile里面的一个关于6410的配置选项:这里有一个smdk6410 选项
<span style="font-size:24px;">smdk6410_config : unconfig @$(MKCONFIG) $(@:_config=) arm s3c64xx smdk6410 samsung s3c6410 </span>
同理我们可以在/board/samsung/目录下找到这个目录文件smdk6410 ,这里面存放的就是支持开发板的一些相关文件
打开里面的链接器脚本u-boot.lds文件可以看到一些非常有用的信息:
/* * (C) Copyright 2002 * Gary Jennejohn, DENX Software Engineering, <gj@denx.de> * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm") /*OUTPUT_FORMAT("elf32-arm", "elf32-arm", "elf32-arm")*/ OUTPUT_ARCH(arm) ENTRY(_start) SECTIONS { . = 0x00000000; . = ALIGN(4); .text : { cpu/s3c64xx/start.o (.text) cpu/s3c64xx/s3c6410/cpu_init.o (.text) cpu/s3c64xx/onenand_cp.o (.text) cpu/s3c64xx/nand_cp.o (.text) cpu/s3c64xx/movi.o (.text) *(.text) lib_arm/div0.o } . = ALIGN(4); .rodata : { *(.rodata) } . = ALIGN(4); .data : { *(.data) } . = ALIGN(4); .got : { *(.got) } __u_boot_cmd_start = .; .u_boot_cmd : { *(.u_boot_cmd) } __u_boot_cmd_end = .; . = ALIGN(4); .mmudata : { *(.mmudata) } . = ALIGN(4); __bss_start = .; .bss : { *(.bss) } _end = .; }
从上面的链接器脚本中可以看到 :ENTRY(_start) 所以整个程序的入口就是_start标号处,下面可以来看看start.S文件的内容:
/* * armboot - Startup Code for S3C6400/ARM1176 CPU-core * * Copyright (c) 2007 Samsung Electronics * * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * * 2007-09-21 - Restructured codes by jsgood (jsgood.yang@samsung.com) * 2007-09-21 - Added moviNAND and OneNAND boot codes by jsgood (jsgood.yang@samsung.com) * Base codes by scsuh (sc.suh) */ #include <config.h> #include <version.h> #ifdef CONFIG_ENABLE_MMU #include <asm/proc/domain.h> #endif #include <regs.h> #ifndef CONFIG_ENABLE_MMU #ifndef CFG_PHY_UBOOT_BASE #define CFG_PHY_UBOOT_BASE CFG_UBOOT_BASE #endif #endif /* ************************************************************************* * * Jump vector table as in table 3.1 in [1] * ************************************************************************* */ .globl _start _start: b reset ldr pc, _undefined_instruction ldr pc, _software_interrupt ldr pc, _prefetch_abort ldr pc, _data_abort ldr pc, _not_used ldr pc, _irq ldr pc, _fiq _undefined_instruction: .word undefined_instruction _software_interrupt: .word software_interrupt _prefetch_abort: .word prefetch_abort _data_abort: .word data_abort _not_used: .word not_used _irq: .word irq _fiq: .word fiq _pad: .word 0x12345678 /* now 16*4=64 */ .global _end_vect _end_vect: .balignl 16,0xdeadbeef /* ************************************************************************* * * Startup Code (reset vector) * * do important init only if we don't start from memory! * setup Memory and board specific bits prior to relocation. * relocate armboot to ram * setup stack * ************************************************************************* */ _TEXT_BASE: .word TEXT_BASE /* * Below variable is very important because we use MMU in U-Boot. * Without it, we cannot run code correctly before MMU is ON. * by scsuh. */ _TEXT_PHY_BASE: .word CFG_PHY_UBOOT_BASE .globl _armboot_start _armboot_start: .word _start /* * These are defined in the board-specific linker script. */ .globl _bss_start _bss_start: .word __bss_start .globl _bss_end _bss_end: .word _end #ifdef CONFIG_USE_IRQ /* IRQ stack memory (calculated at run-time) */ .globl IRQ_STACK_START IRQ_STACK_START: .word 0x0badc0de /* IRQ stack memory (calculated at run-time) */ .globl FIQ_STACK_START FIQ_STACK_START: .word 0x0badc0de #endif /* * the actual reset code */ reset: /* * set the cpu to SVC32 mode */ mrs r0,cpsr bic r0,r0,#0x1f orr r0,r0,#0xd3 msr cpsr,r0 /* ************************************************************************* * * CPU_init_critical registers * * setup important registers * setup memory timing * ************************************************************************* */ /* * we do sys-critical inits only at reboot, * not when booting from ram! */ cpu_init_crit: /* * flush v4 I/D caches */ mov r0, #0 mcr p15, 0, r0, c7, c7, 0 /* flush v3/v4 cache */ mcr p15, 0, r0, c8, c7, 0 /* flush v4 TLB */ /* * disable MMU stuff and caches */ mrc p15, 0, r0, c1, c0, 0 bic r0, r0, #0x00002300 @ clear bits 13, 9:8 (--V- --RS) bic r0, r0, #0x00000087 @ clear bits 7, 2:0 (B--- -CAM) orr r0, r0, #0x00000002 @ set bit 2 (A) Align orr r0, r0, #0x00001000 @ set bit 12 (I) I-Cache mcr p15, 0, r0, c1, c0, 0 /* Peri port setup */ ldr r0, =0x70000000 orr r0, r0, #0x13 mcr p15,0,r0,c15,c2,4 @ 256M(0x70000000-0x7fffffff) #ifdef CONFIG_BOOT_ONENAND ldr r0, =0x70000000 @ onenand controller setup orr r0, r0, #0x100000 ldr r1, =0x4000 orr r1, r1, #0xe0 str r1, [r0] #if defined(CONFIG_S3C6410) || defined(CONFIG_S3C6430) orr r0, r0, #300 @ disable watchdog mov r1, #1 str r1, [r0] mov r1, #0x23000000 @ start buffer register orr r1, r1, #0x30000 orr r1, r1, #0xc800 #else mov r1, =0x20000000 @ start buffer register orr r1, r1, #0xc30000 orr r1, r1, #0xc800 #endif sub r0, r1, #0x0400 @ start address1 register ldr r2, [r1, #0x84] @ ecc bypass orr r2, r2, #0x100 str r2, [r1, #0x84] mov r3, #0x0 @ DFS, FBA str r3, [r0, #0x00] str r3, [r0, #0x04] @ select dataram for DDP as 0 mov r4, #0x104 @ interrupt register mov r5, #0x0002 @ FPA, FSA mov r6, #0x0800 @ BSA onenand_bl1_load: str r5, [r0, #0x1c] @ save FPA, FSA orr r6, r6, #0x02 @ BSC str r6, [r1, #0x00] @ save BSA, BSC str r3, [r1, r4] @ clear interrupt str r3, [r1, #0x80] @ write load command mov r7, #0x100 @ need small delay onenand_wait_loop1: subs r7, r7, #0x1 bne onenand_wait_loop1 add r5, r5, #0x2 @ next FPA, FSA sub r6, r6, #0x2 add r6, r6, #0x200 @ next BSA cmp r5, #0x8 bne onenand_bl1_load #endif /* * Go setup Memory and board specific bits prior to relocation. */ bl lowlevel_init /* go setup pll,mux,memory */ /* when we already run in ram, we don't need to relocate U-Boot. * and actually, memory controller must be configured before U-Boot * is running in ram. */ ldr r0, =0xff000fff bic r1, pc, r0 /* r0 <- current base addr of code */ ldr r2, _TEXT_BASE /* r1 <- original base addr in ram */ bic r2, r2, r0 /* r0 <- current base addr of code */ cmp r1, r2 /* compare r0, r1 */ beq after_copy /* r0 == r1 then skip flash copy */ #ifdef CONFIG_BOOT_NOR /* relocate U-Boot to RAM */ adr r0, _start /* r0 <- current position of code */ ldr r1, _TEXT_PHY_BASE /* r1 <- destination */ ldr r2, _armboot_start ldr r3, _bss_start sub r2, r3, r2 /* r2 <- size of armboot */ add r2, r0, r2 /* r2 <- source end address */ nor_copy_loop: ldmia r0!, {r3-r10} /* copy from source address [r0] */ stmia r1!, {r3-r10} /* copy to target address [r1] */ cmp r0, r2 /* until source end addreee [r2] */ ble nor_copy_loop b after_copy #endif #ifdef CONFIG_BOOT_NAND mov r0, #0x1000 bl copy_from_nand #endif #ifdef CONFIG_BOOT_MOVINAND ldr sp, _TEXT_PHY_BASE bl movi_bl2_copy b after_copy #endif #ifdef CONFIG_BOOT_ONENAND ldr sp, =0x50000000 @ temporary stack #ifdef CONFIG_S3C6400 mov r1, =0x20000000 @ start buffer register orr r1, r1, #0xc30000 orr r1, r1, #0xc800 #else mov r1, #0x23000000 @ start buffer register orr r1, r1, #0x30000 orr r1, r1, #0xc800 #endif ldr r2, [r1, #0x84] @ ecc bypass orr r2, r2, #0x100 str r2, [r1, #0x84] sub r0, r1, #0x0400 @ start address1 register str r3, [r0, #0x00] str r3, [r0, #0x04] @ select dataram for DDP as 0 mov r4, #0x104 @ interrupt register mov r6, #0x0c00 @ fixed dataram1 sector number str r6, [r1, #0x00] mov r3, #0x0 @ DFS, FBA mov r5, #0x0000 @ FPA, FSA ldr r9, =CFG_PHY_UBOOT_BASE @ destination onenand_bl2_load: str r3, [r0, #0x00] @ save DFS, FBA str r5, [r0, #0x1c] @ save FPA, FSA mov r7, #0x0 @ clear interrupt str r7, [r1, r4] str r7, [r1, #0x80] @ write load command mov r8, #0x1000 onenand_wait_loop2: subs r8, r8, #0x1 bne onenand_wait_loop2 onenand_wait_int: @ wait INT and RI ldr r7, [r1, r4] mov r8, #0x8000 orr r8, r8, #0x80 tst r7, r8 beq onenand_wait_int mov r7, #0x0 @ clear interrupt str r7, [r1, r4] mov r8, #0xc00 @ source address (dataram1) mov r10, #0x40 @ copy loop count (64 = 2048 / 32) stmia sp, {r0-r7} @ backup onenand_copy_to_ram: ldmia r8!, {r0-r7} stmia r9!, {r0-r7} subs r10, r10, #0x1 bne onenand_copy_to_ram ldmia sp, {r0-r7} @ restore add r5, r5, #0x4 @ next FPA cmp r5, #0x100 @ last FPA? bne onenand_bl2_load /* next block */ mov r5, #0x0 @ reset FPA add r3, r3, #0x1 @ next FBA cmp r3, #0x2 @ last FBA? bne onenand_bl2_load b after_copy #endif #ifdef CONFIG_BOOT_ONENAND_IROM ldr sp, _TEXT_PHY_BASE bl onenand_bl2_copy b after_copy #endif after_copy: #ifdef CONFIG_ENABLE_MMU enable_mmu: /* enable domain access */ ldr r5, =0x0000ffff mcr p15, 0, r5, c3, c0, 0 @ load domain access register /* Set the TTB register */ ldr r0, _mmu_table_base ldr r1, =CFG_PHY_UBOOT_BASE ldr r2, =0xfff00000 bic r0, r0, r2 orr r1, r0, r1 mcr p15, 0, r1, c2, c0, 0 /* Enable the MMU */ mmu_on: mrc p15, 0, r0, c1, c0, 0 orr r0, r0, #1 /* Set CR_M to enable MMU */ mcr p15, 0, r0, c1, c0, 0 nop nop nop nop #endif skip_hw_init: /* Set up the stack */ stack_setup: #ifdef CONFIG_MEMORY_UPPER_CODE ldr sp, =(CFG_UBOOT_BASE + CFG_UBOOT_SIZE - 0xc) #else ldr r0, _TEXT_BASE /* upper 128 KiB: relocated uboot */ sub r0, r0, #CFG_MALLOC_LEN /* malloc area */ sub r0, r0, #CFG_GBL_DATA_SIZE /* bdinfo */ #ifdef CONFIG_USE_IRQ sub r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ) #endif sub sp, r0, #12 /* leave 3 words for abort-stack */ #endif clear_bss: ldr r0, _bss_start /* find start of bss segment */ ldr r1, _bss_end /* stop here */ mov r2, #0x00000000 /* clear */ clbss_l: str r2, [r0] /* clear loop... */ add r0, r0, #4 cmp r0, r1 ble clbss_l ldr pc, _start_armboot _start_armboot: .word start_armboot #ifdef CONFIG_ENABLE_MMU _mmu_table_base: .word mmu_table #endif /* * copy U-Boot to SDRAM and jump to ram (from NAND or OneNAND) * r0: size to be compared * Load 1'st 2blocks to RAM because U-boot's size is larger than 1block(128k) size */ .globl copy_from_nand copy_from_nand: mov r10, lr /* save return address */ mov r9, r0 /* get ready to call C functions */ ldr sp, _TEXT_PHY_BASE /* setup temp stack pointer */ sub sp, sp, #12 mov fp, #0 /* no previous frame, so fp=0 */ mov r9, #0x1000 bl copy_uboot_to_ram 3: tst r0, #0x0 bne copy_failed ldr r0, =0x0c000000 ldr r1, _TEXT_PHY_BASE 1: ldr r3, [r0], #4 ldr r4, [r1], #4 teq r3, r4 bne compare_failed /* not matched */ subs r9, r9, #4 bne 1b 4: mov lr, r10 /* all is OK */ mov pc, lr copy_failed: nop /* copy from nand failed */ b copy_failed compare_failed: nop /* compare failed */ b compare_failed /* * we assume that cache operation is done before. (eg. cleanup_before_linux()) * actually, we don't need to do anything about cache if not use d-cache in U-Boot * So, in this function we clean only MMU. by scsuh * * void theLastJump(void *kernel, int arch_num, uint boot_params); */ #ifdef CONFIG_ENABLE_MMU .globl theLastJump theLastJump: mov r9, r0 ldr r3, =0xfff00000 ldr r4, _TEXT_PHY_BASE adr r5, phy_last_jump bic r5, r5, r3 orr r5, r5, r4 mov pc, r5 phy_last_jump: /* * disable MMU stuff */ mrc p15, 0, r0, c1, c0, 0 bic r0, r0, #0x00002300 /* clear bits 13, 9:8 (--V- --RS) */ bic r0, r0, #0x00000087 /* clear bits 7, 2:0 (B--- -CAM) */ orr r0, r0, #0x00000002 /* set bit 2 (A) Align */ orr r0, r0, #0x00001000 /* set bit 12 (I) I-Cache */ mcr p15, 0, r0, c1, c0, 0 mcr p15, 0, r0, c8, c7, 0 /* flush v4 TLB */ mov r0, #0 mov pc, r9 #endif /* ************************************************************************* * * Interrupt handling * ************************************************************************* */ @ @ IRQ stack frame. @ #define S_FRAME_SIZE 72 #define S_OLD_R0 68 #define S_PSR 64 #define S_PC 60 #define S_LR 56 #define S_SP 52 #define S_IP 48 #define S_FP 44 #define S_R10 40 #define S_R9 36 #define S_R8 32 #define S_R7 28 #define S_R6 24 #define S_R5 20 #define S_R4 16 #define S_R3 12 #define S_R2 8 #define S_R1 4 #define S_R0 0 #define MODE_SVC 0x13 #define I_BIT 0x80 /* * use bad_save_user_regs for abort/prefetch/undef/swi ... * use irq_save_user_regs / irq_restore_user_regs for IRQ/FIQ handling */ .macro bad_save_user_regs sub sp, sp, #S_FRAME_SIZE @ carve out a frame on current user stack stmia sp, {r0 - r12} @ Save user registers (now in svc mode) r0-r12 ldr r2, _armboot_start sub r2, r2, #(CFG_MALLOC_LEN) sub r2, r2, #(CFG_GBL_DATA_SIZE+8) @ set base 2 words into abort stack ldmia r2, {r2 - r3} @ get values for "aborted" pc and cpsr (into parm regs) add r0, sp, #S_FRAME_SIZE @ grab pointer to old stack add r5, sp, #S_SP mov r1, lr stmia r5, {r0 - r3} @ save sp_SVC, lr_SVC, pc, cpsr mov r0, sp @ save current stack into r0 (param register) .endm .macro irq_save_user_regs sub sp, sp, #S_FRAME_SIZE stmia sp, {r0 - r12} @ Calling r0-r12 add r8, sp, #S_PC @ !!!! R8 NEEDS to be saved !!!! a reserved stack spot would be good. stmdb r8, {sp, lr}^ @ Calling SP, LR str lr, [r8, #0] @ Save calling PC mrs r6, spsr str r6, [r8, #4] @ Save CPSR str r0, [r8, #8] @ Save OLD_R0 mov r0, sp .endm .macro irq_restore_user_regs ldmia sp, {r0 - lr}^ @ Calling r0 - lr mov r0, r0 ldr lr, [sp, #S_PC] @ Get PC add sp, sp, #S_FRAME_SIZE subs pc, lr, #4 @ return & move spsr_svc into cpsr .endm .macro get_bad_stack ldr r13, _armboot_start @ setup our mode stack (enter in banked mode) sub r13, r13, #(CFG_MALLOC_LEN) @ move past malloc pool sub r13, r13, #(CFG_GBL_DATA_SIZE+8) @ move to reserved a couple spots for abort stack str lr, [r13] @ save caller lr in position 0 of saved stack mrs lr, spsr @ get the spsr str lr, [r13, #4] @ save spsr in position 1 of saved stack mov r13, #MODE_SVC @ prepare SVC-Mode @ msr spsr_c, r13 msr spsr, r13 @ switch modes, make sure moves will execute mov lr, pc @ capture return pc movs pc, lr @ jump to next instruction & switch modes. .endm .macro get_bad_stack_swi sub r13, r13, #4 @ space on current stack for scratch reg. str r0, [r13] @ save R0's value. ldr r0, _armboot_start @ get data regions start sub r0, r0, #(CFG_MALLOC_LEN) @ move past malloc pool sub r0, r0, #(CFG_GBL_DATA_SIZE+8) @ move past gbl and a couple spots for abort stack str lr, [r0] @ save caller lr in position 0 of saved stack mrs r0, spsr @ get the spsr str lr, [r0, #4] @ save spsr in position 1 of saved stack ldr r0, [r13] @ restore r0 add r13, r13, #4 @ pop stack entry .endm .macro get_irq_stack @ setup IRQ stack ldr sp, IRQ_STACK_START .endm .macro get_fiq_stack @ setup FIQ stack ldr sp, FIQ_STACK_START .endm /* * exception handlers */ .align 5 undefined_instruction: get_bad_stack bad_save_user_regs bl do_undefined_instruction .align 5 software_interrupt: get_bad_stack_swi bad_save_user_regs bl do_software_interrupt .align 5 prefetch_abort: get_bad_stack bad_save_user_regs bl do_prefetch_abort .align 5 data_abort: get_bad_stack bad_save_user_regs bl do_data_abort .align 5 not_used: get_bad_stack bad_save_user_regs bl do_not_used #ifdef CONFIG_USE_IRQ .align 5 irq: get_irq_stack irq_save_user_regs bl do_irq irq_restore_user_regs .align 5 fiq: get_fiq_stack /* someone ought to write a more effiction fiq_save_user_regs */ irq_save_user_regs bl do_fiq irq_restore_user_regs #else .align 5 irq: get_bad_stack bad_save_user_regs bl do_irq .align 5 fiq: get_bad_stack bad_save_user_regs bl do_fiq #endif .align 5 .global arm1136_cache_flush arm1136_cache_flush: mcr p15, 0, r1, c7, c5, 0 @ invalidate I cache mov pc, lr @ back to caller #if defined(CONFIG_INTEGRATOR) && defined(CONFIG_ARCH_CINTEGRATOR) /* Use the IntegratorCP function from board/integratorcp/platform.S */ #elif defined(CONFIG_S3C64XX) /* For future usage of S3C64XX*/ #else .align 5 .globl reset_cpu reset_cpu: ldr r1, rstctl /* get addr for global reset reg */ mov r3, #0x2 /* full reset pll+mpu */ str r3, [r1] /* force reset */ mov r0, r0 _loop_forever: b _loop_forever rstctl: .word PM_RSTCTRL_WKUP #endif全部都是汇编代码,而且还有点长!其实整个学下来相比数据结构和算法感觉还是简单多了!从上面的代码中可以找到_start标号处,那就是程序开始执行的入口处!下面就可以用sourceInsight来分析源码了!
下面的基本上是对照着uboot源码里面的ok6410 start.S源码分析整个start过程的工作流程图!对比着上面的代码和注释结合起来看可以看到也不是那么复杂!在把里面的各个知识点逐个击破!
OK6410开发板bootloader架构设计分析---嵌入式回归第五篇
标签:
原文地址:http://blog.csdn.net/coding__madman/article/details/51175191