码迷,mamicode.com
首页 > 其他好文 > 详细

hdu 5667 Sequence 矩阵快速幂+费马小定理

时间:2016-04-24 14:08:13      阅读:249      评论:0      收藏:0      [点我收藏+]

标签:

Sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)


Problem Description
    Holion August will eat every thing he has found.

    Now there are many foods,but he does not want to eat all of them at once,so he find a sequence.

fn=?????1,ab,abfcn1fn2,n=1n=2otherwise

    He gives you 5 numbers n,a,b,c,p,and he will eat fn foods.But there are only p foods,so you should tell him fn mod p.
 

 

Input
    The first line has a number,T,means testcase.

    Each testcase has 5 numbers,including n,a,b,c,p in a line.

    1T10,1n1018,1a,b,c109,p is a prime number,and p109+7.
 

 

Output
    Output one number for each case,which is fn mod p.
 

 

Sample Input
1 5 3 3 3 233
 

 

Sample Output
190
 

 

Source
思路:就是f(n)=f(n-1)*c+f(n-2)  +b;
   求a^f(n)%p=a^(f(n)%(p-1))%p;//费马小
   矩阵构造博客:http://www.cnblogs.com/frog112111/archive/2013/05/19/3087648.html
   还有个坑点a%p==0
技术分享
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll __int64
#define mod 1000000007
#define inf 999999999
//#pragma comment(linker, "/STACK:102400000,102400000")
ll a,b,c,n,p;
struct is
{
    ll a[10][10];
};
is juzhenmul(is a,is b,ll hang ,ll lie)
{
    int i,t,j;
    is ans;
    memset(ans.a,0,sizeof(ans.a));
    for(i=1;i<=hang;i++)
    for(t=1;t<=lie;t++)
    for(j=1;j<=lie;j++)
    {
        ans.a[i][t]+=(a.a[i][j]*b.a[j][t]);
        ans.a[i][t]%=(p-1);
    }
    return ans;
}
is quickpow(is ans,is a,ll x)
{
    while(x)
    {
        if(x&1)  ans=juzhenmul(ans,a,3,3);
        a=juzhenmul(a,a,3,3);
        x>>=1;
    }
    return ans;
}
ll quickpow1(ll a,ll n)
{
    ll mul=1;
    if(a%p==0)
    return 0;
    while(n)
    {
        if(n&1) mul*=a,mul%=p;
        n>>=1;
        a=a*a;
        a%=p;
    }
    return mul;
}
int main()
{
    is ans,base,gg;
    int gggg;
    scanf("%d",&gggg);
    while(gggg--)
    {
        ll fn;
        scanf("%I64d%I64d%I64d%I64d%I64d",&n,&a,&b,&c,&p);
        if(n>2)
        {
            memset(ans.a,0,sizeof(ans.a));
            ans.a[1][1]=1;
            ans.a[2][2]=1;
            ans.a[3][3]=1;
            memset(base.a,0,sizeof(base.a));
            base.a[1][1]=c;
            base.a[1][2]=1;
            base.a[2][1]=1;
            base.a[3][1]=1;
            base.a[3][3]=1;
            ans=quickpow(ans,base,n-2);
            gg.a[1][1]=b;
            gg.a[1][2]=0;
            gg.a[1][3]=b;
            ans=juzhenmul(gg,ans,1,3);
            fn=ans.a[1][1];
        }
        else
        {
            if(n==1)
            fn=0;
            else
            fn=b;
        }
        printf("%I64d\n",quickpow1(a,fn));
    }
    return 0;
}
View Code

 

 
 
 

hdu 5667 Sequence 矩阵快速幂+费马小定理

标签:

原文地址:http://www.cnblogs.com/jhz033/p/5426878.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!