For a positive integer N , the digit-sum of N is defined as the sum of N itself and its digits. When M is the digitsum of N , we call N a generator of M .
For example, the digit-sum of 245 is 256 (= 245 + 2 + 4 + 5). Therefore, 245 is a generator of 256.
Not surprisingly, some numbers do not have any generators and some numbers have more than one generator. For example, the generators of 216 are 198 and 207.
You are to write a program to find the smallest generator of the given integer.
Your program is to read from standard input. The input consists of T test cases. The number of test cases T is given in the first line of the input. Each test case takes one line containing an integer N , 1N100, 000 .
Your program is to write to standard output. Print exactly one line for each test case. The line is to contain a generator of N for each test case. If N has multiple generators, print the smallest. If N does not have any generators, print 0.
The following shows sample input and output for three test cases.
3 216 121 2005
198 0 1979
如果a加上a所有数位上的数等于b时 a称为b的generator 求给定数的最小generator
给的数n是小于100,000的 考虑到所有数位和最大的数99,999的数位和也才45 因此我们只需要从n-45到n枚举就行了
#include<cstdio> #include<cstring> using namespace std; int t, n, a, b, ans, l; int main() { scanf ("%d", &t); while (t--) { scanf ("%d", &n); ans = 0; for (int i = n-50; i < n; ++i) { a = b = i; while (b) { a += b % 10; b /= 10; } if (a + b == n) { ans = i; break; } } printf ("%d\n", ans); } return 0; }
UVa 1583 Digit Generator(数),布布扣,bubuko.com
原文地址:http://blog.csdn.net/iooden/article/details/38277817