标签:
快速幂在算指数时是很高效的,他的基本原理是二进制。
如果要算
2^5,可以直接2*2*2*2*2
但是如果要算
3^999,指数N太大,计算太慢,所以有一种快速的解法。
@@@@@@@@@@@@@@@@@@@@@@@@
以3^21为例。
2^21=(2^16)×(2^4)×(2^1)
21的二进制可以写成(10101)----------------而10101可以写成1*2^4+0*2^3+1*2^2+0*2^1+1*2^0
可以明显看出, 每一个香对应着上边的指数。 2^4=16 2^2=4; 2^0=1 其他项为0;
(具体推理有空再写)
@@@@@@@@@@@@@@@@@@@@@@@@
再找一个例子
2^13
13=(1101),-----------------1*2^3+1*2^2+1*2^0, 指数分别是8,4,1;
2^13=2^(8+4+1)
///////A^(一个二进制数如101010)=A^(100000)*A^(00000)*A(1000)*A^(000)*A^(10)*A^(0)=A^(2^5)*A^(2^3)*A^(2^1)
@@@@@@@@@@@@@@@@@@@@@@@@
所以要计算X^N,现将N变成二进制,然后依次计算二进制的每位的值(如果为二进制位为0不计算)
@@@@@@@@@@二进制的计算@@@@@@@@@@@@@@
计算13的二进制,对其除2取余,记录余数。
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
代码如下:
1 int pow_n(int x, int n) 2 { 3 int pw = 1; 4 5 while (n > 0) { 6 if ((n % 2) == 1) 7 pw *= x; 8 x *= x; 9 n /= 2; 10 11 } 12 return pw; 13 }
计算2^13的步骤就是:
13=(1101)
n%2, 最低位是1, 所以把这部分累乘到pw中,(pw=2^1)x自乘后变成x^2,n=n/2;
n 的这一位是0,所以if不成立,不执行累2乘, x自乘后变成x^4,n=n/2;
n 的这一位是1,(pw=2^1*2^4),所以累乘到pw中。x自乘后变成x^8,n=n/2;
n 的这一位是1,(pw=2^1*2^4*2^8)所以累乘到pw中。
这是快速求幂的思想,把指数n 分解为2的幂次的和,利用自乘计算x 的(2的幂次)次方, 然后根据需要决定是否累乘相应的幂次。
这样可以把O(n)次乘法缩短到O(logn)次乘法,实现快速计算。
n=n/2和 (n%2==1)是检查指数n 的某个二进制位是否是1的手段。
标签:
原文地址:http://www.cnblogs.com/hutonm/p/5433149.html