标签:
本文的数据集pga.csv包含了职业高尔夫球手的发球统计信息,包含两个属性:accuracy 和 distance。accuracy 精确度描述了命中球道( fairways hit)的比例,Distances 描述的是发球的平均距离。我们的目的是用距离来预测命中率。在高尔夫中,一个人发球越远,那么精度会越低。
import pandas
import matplotlib.pyplot as plt
pga = pandas.read_csv("pga.csv")
# Normalize the data DataFrame可以用{.属性名}来调用一列数据的方式,返回ndarray对象
pga.distance = (pga.distance - pga.distance.mean()) / pga.distance.std()
pga.accuracy = (pga.accuracy - pga.accuracy.mean()) / pga.accuracy.std()
print(pga.head())
plt.scatter(pga.distance, pga.accuracy)
plt.xlabel(‘normalized distance‘)
plt.ylabel(‘normalized accuracy‘)
plt.show()
‘‘‘
distance accuracy
0 0.314379 -0.707727
1 1.693777 -1.586669
2 -0.059695 -0.176699
3 -0.574047 0.372640
4 1.343083 -1.934584
‘‘‘
from sklearn.linear_model import LinearRegression
import numpy as np
# We can add a dimension to an array by using np.newaxis
print("Shape of the series:", pga.distance.shape) #这是一个ndarray对象,但是大小没有指定,因此需要人为指定一个
print("Shape with newaxis:", pga.distance[:, np.newaxis].shape)
‘‘‘
Shape of the series: (197,)
Shape with newaxis: (197, 1)
‘‘‘
# The X variable in LinearRegression.fit() must have 2 dimensions
lm = LinearRegression()
lm.fit(pga.distance[:, np.newaxis], pga.accuracy)
theta1 = lm.coef_[0]
# The cost function of a single variable linear model
def cost(theta0, theta1, x, y):
# Initialize cost
J = 0
# The number of observations
m = len(x)
# Loop through each observation
for i in range(m):
# Compute the hypothesis
h = theta1 * x[i] + theta0
# Add to cost
J += (h - y[i])**2
# Average and normalize cost
J /= (2*m)
return J
# The cost for theta0=0 and theta1=1
print(cost(0, 1, pga.distance, pga.accuracy))
theta0 = 100
theta1s = np.linspace(-3,2,100)
costs = []
for theta1 in theta1s:
costs.append(cost(theta0, theta1, pga.distance, pga.accuracy))
plt.plot(theta1s, costs)
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
theta0s = np.linspace(-2,2,100)
theta1s = np.linspace(-2,2, 100)
COST = np.empty(shape=(100,100))
# T0S:为100theta0s(theta1s的长度)行theta0s,T1S:为100列(theta0s的长度)theta1s
T0S, T1S = np.meshgrid(theta0s, theta1s)
# for each parameter combination compute the cost
for i in range(100):
for j in range(100):
COST[i,j] = cost(T0S[0,i], T1S[j,0], pga.distance, pga.accuracy)
# make 3d plot
fig2 = plt.figure()
ax = fig2.gca(projection=‘3d‘)
ax.plot_surface(X=T0S,Y=T1S,Z=COST)
plt.show()
上面这段代码首先用了一个新的函数meshgrid,参数为两个数组,第一个长度为m,第二个长度为n。因此返回的是第一个数组的n行复制,以及第二个数组的m列复制。举个例子:
x = [1,2,3],y=[5,6]————X=[[1,2,3],[1,2,3]],Y=[[5,5,5],[6,6,6]].
上述代码生成了一组系数,并且将误差与系数一起画了一个3D图。图中最低的地方就是最优解。
1.本质相同:两种方法都是在给定已知数据(independent & dependent variables)的前提下对dependent variables算出出一个一般性的估值函数。然后对给定新数据的dependent variables进行估算。
2.目标相同:都是在已知数据的框架内,使得估算值与实际值的总平方差尽量更小(事实上未必一定要使用平方)。
3.实现方法和结果不同:最小二乘法是直接对求导找出全局最小,是非迭代法。而梯度下降法是一种迭代法,先给定一个参数向量,然后向误差值下降最快的方向调整参数,在若干次迭代之后找到局部最小。梯度下降法的缺点是到最小点的时候收敛速度变慢,并且对初始点的选择极为敏感,其改进大多是在这两方面下功夫。当然, 其实梯度下降法还有别的其他用处, 比如其他找极值问题. 另外, 牛顿法也是一种不错的方法, 迭代收敛速度快于梯度下降法, 只是计算代价也比较高.
# Partial derivative of cost in terms of theta0
def partial_cost_theta0(theta0, theta1, x, y):
# Hypothesis
h = theta0 + theta1*x
# Difference between hypothesis and observation
diff = (h - y)
# Compute partial derivative
partial = diff.sum() / (x.shape[0])
return partial
partial0 = partial_cost_theta0(1, 1, pga.distance, pga.accuracy)
# x is our feature vector -- distance
# y is our target variable -- accuracy
# alpha is the learning rate
# theta0 is the intial theta0
# theta1 is the intial theta1
def gradient_descent(x, y, alpha=0.1, theta0=0, theta1=0):
max_epochs = 1000 # Maximum number of iterations
counter = 0 # Intialize a counter
c = cost(theta1, theta0, pga.distance, pga.accuracy) ## Initial cost
costs = [c] # Lets store each update
# Set a convergence threshold to find where the cost function in minimized
# When the difference between the previous cost and current cost
# is less than this value we will say the parameters converged
convergence_thres = 0.000001
cprev = c + 10
theta0s = [theta0]
theta1s = [theta1]
# When the costs converge or we hit a large number of iterations will we stop updating
while (np.abs(cprev - c) > convergence_thres) and (counter < max_epochs):
cprev = c
# Alpha times the partial deriviative is our updated
update0 = alpha * partial_cost_theta0(theta0, theta1, x, y)
update1 = alpha * partial_cost_theta1(theta0, theta1, x, y)
# Update theta0 and theta1 at the same time
# We want to compute the slopes at the same set of hypothesised parameters
# so we update after finding the partial derivatives
theta0 -= update0
theta1 -= update1
# Store thetas
theta0s.append(theta0)
theta1s.append(theta1)
# Compute the new cost
c = cost(theta0, theta1, pga.distance, pga.accuracy)
# Store updates
costs.append(c)
counter += 1 # Count
return {‘theta0‘: theta0, ‘theta1‘: theta1, "costs": costs}
print("Theta1 =", gradient_descent(pga.distance, pga.accuracy)[‘theta1‘])
descend = gradient_descent(pga.distance, pga.accuracy, alpha=.01)
plt.scatter(range(len(descend["costs"])), descend["costs"])
plt.show()
标签:
原文地址:http://blog.csdn.net/zm714981790/article/details/51250733