标签:
最近数值计算学了Guass列主消元法和三角分解法解线性方程组,具体原理如下:
1、Guass列选主元消去法对于AX =B
1)、消元过程:将(A|B)进行变换为,其中是上三角矩阵。即:
k从1到n-1
a、 列选主元
选取第k列中绝对值最大元素作为主元。
b、 换行
c、 归一化
d、 消元
2)、回代过程:由解出。
2、三角分解法(Doolittle分解)
将A分解为如下形式
由矩阵乘法原理
a、计算U的第一行,再计算L的第一列
b、设已求出U的1至r-1行,L的1至r-1列。先计算U的第r行,再计算L的第r列。
a)计算U的r行
b)计算L的r列
C#代码:
代码说明:Guass列主消元法部分将计算出来的根仍然储存在增广矩阵的最后一列,而Doolittle分解,将分解后的结果也储存至原来的数组中,这样可以节约空间。。
using System; using System.Windows.Forms; namespace Test { public partial class Form1 : Form { public Form1() { InitializeComponent(); } private void Cannel_Button_Click(object sender, EventArgs e) { this.textBox1.Clear(); this.textBox2.Clear(); this.textBox3.Clear(); this.comboBox1.SelectedIndex = -1; } public double[,] GetNum(string str, int n) { string[] strnum = str.Split(‘ ‘); double[,] a = new double[n, n + 1]; int k = 0; for (int i = 0; i < n; i++) { for (int j = 0; j < strnum.Length / n; j++) { a[i, j] = double.Parse((strnum[k]).ToString()); k++; } } return a; } public void Gauss(double[,] a, int n) { int i, j; SelectColE(a, n); for (i = n - 1; i >= 0; i--) { for (j = i + 1; j < n; j++) a[i, n] -= a[i, j] * a[j, n]; a[i, n] /= a[i, i]; } } //选择列主元并进行消元 public void SelectColE(double[,] a, int n) { int i, j, k, maxRowE; double temp; //用于记录消元时的因数 for (j = 0; j < n; j++) { maxRowE = j; for (i = j; i < n; i++) if (System.Math.Abs(a[i, j]) > System.Math.Abs(a[maxRowE, j])) maxRowE = i; if (maxRowE != j) swapRow(a, j, maxRowE, n); //与最大主元所在行交换 //消元 for (i = j + 1; i < n; i++) { temp = a[i, j] / a[j, j]; for (k = j; k < n + 1; k++) a[i, k] -= a[j, k] * temp; } } return; } public void swapRow(double[,] a, int m, int maxRowE, int n) { int k; double temp; for (k = m; k < n + 1; k++) { temp = a[m, k]; a[m, k] = a[maxRowE, k]; a[maxRowE, k] = temp; } } public void Doolittle(double[,] a, int n) { for (int i = 0; i < n; i++) { if (i == 0) { for (int j = i + 1; j < n; j++) a[j, 0] = a[j, 0] / a[0, 0]; } else { double temp = 0, s = 0; for (int j = i; j < n; j++) { for (int k = 0; k < i; k++) { temp = temp + a[i, k] * a[k, j]; } a[i, j] = a[i, j] - temp; } for (int j = i + 1; j < n; j++) { for (int k = 0; k < i; k++) { s = s + a[j, k] * a[k, i]; } a[j, i] = (a[j, i] - s) / a[i, i]; } } } } private void Exit_Button_Click(object sender, EventArgs e) { this.Close(); } private void Confirm_Button_Click(object sender, EventArgs e) { if (this.textBox2.Text.Trim().ToString().Length == 0) { this.textBox2.Text = this.textBox1.Text.Trim(); } else { this.textBox2.Text = this.textBox2.Text + "\r\n" + this.textBox1.Text.Trim(); } this.textBox1.Clear(); } private void Calculate_Button_Click(object sender, EventArgs e) { string str = this.textBox2.Text.Trim().ToString(); string myString = str.Replace("\n", " ").Replace("\r", string.Empty); double[,] a = new double[this.textBox2.Lines.GetUpperBound(0) + 1, this.textBox2.Lines.GetUpperBound(0) + 2]; a = GetNum(myString, this.textBox2.Lines.GetUpperBound(0) + 1); if (this.comboBox1.Text == "Guass列主消元法") { Gauss(a, this.textBox2.Lines.GetUpperBound(0) + 1); for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++) { this.textBox3.Text = this.textBox3.Text + "\r\nX" + (i + 1) + "=" + a[i, this.textBox2.Lines.GetUpperBound(0) + 1]; } } else if (this.comboBox1.Text == "Doolittle三角分解法") { this.textBox3.Enabled = true; Doolittle(a, this.textBox2.Lines.GetUpperBound(0) + 1); this.label3.Text = "分解后的结果:"; this.textBox3.Clear(); this.textBox3.Text += "L矩阵:\r\n"; for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++) { for (int j = 0; j < this.textBox2.Lines.GetUpperBound(0) + 1; j++) { if (j < i) { this.textBox3.Text += a[i, j].ToString() + "\t"; } else if (i == j) { this.textBox3.Text += "1\t"; } else { this.textBox3.Text += "0\t"; } } this.textBox3.Text += "\r\n"; } this.textBox3.Text += "\r\nU矩阵:\r\n"; for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++) { for (int j = 0; j < this.textBox2.Lines.GetUpperBound(0) + 1; j++) { if (j >= i) { this.textBox3.Text += a[i, j].ToString() + "\t"; } else { this.textBox3.Text += "0\t"; } } this.textBox3.Text += "\r\n"; } } } private void textBox1_KeyDown(object sender, KeyEventArgs e) { if (e.KeyCode == Keys.Enter) { if (this.textBox1.Text.Trim().ToString().Length == 0) { Calculate_Button_Click(sender, e); } else { Confirm_Button_Click(sender, e); } } } private void button1_Click(object sender, EventArgs e) { this.textBox2.Enabled = true; } } }
运行截图:
至此完毕。。。。
标签:
原文地址:http://www.cnblogs.com/czx1/p/5438136.html