标签:
问题描述:
在股市的交易日中,假设最多可进行两次买卖(即买和卖的次数均小于等于2),规则是必须一笔成交后进行另一笔(即买-卖-买-卖的顺序进行)。给出一天中的股票变化序列,请写一个程序计算一天可以获得的最大收益。请采用实践复杂度低的方法实现。
给定价格序列prices及它的长度n,请返回最大收益。保证长度小于等于500。
class Solution { public: int maxProfit(vector<int>& prices) { //It‘s wrong if you choose the minimum price for buy2 , but you can maximize the left money. // int buy1 = INT_MIN, sale1 = 0, buy2 = INT_MIN, sale2 = 0; for(int i=0; i<prices.size(); i++){ //the more money left, the happier you will be buy1 = max(buy1, -prices[i]); //left money after buy1 sale1 = max(sale1, prices[i] + buy1); //left money after sale1 buy2 = max(buy2, sale1 - prices[i]); //left money after buy2 sale2 = max(sale2, prices[i] + buy2); //left money after sale2 } return sale2; } };
此方法的核心是对于每个数据,我都以相同的处理方法(动态规划),在此,把问题解决转化为手头的剩余的钱的变化, 每一步的处理都是为了手上留下的钱更多。
标签:
原文地址:http://www.cnblogs.com/zehua-shu/p/5439468.html