标签:
编译预处理会在编译前处理好,比如#define N 7 则遇到N的地方都直接用7替换,然后在进行整个程序的编译,typedef则是在编译时遇到你所定义的东西,再回到typedef语句中寻找解释,继续编译下去的。(碰到一个,回去处理一个,不是一下子处理好)
#define 并不是定义变量, 只是用来做文本替换
例如:
#define PI 3.1415926
float angel;
angel= 30*PI/180;
那么,当程序进行编译的时候,编译器会首先将 “#define PI 3.1415926”以后的,所有代码中的“Pi”全部换成 “3.1415926” 然后再进行编译。
我查到一个讲const与#define的差别的帖子,里面谈到const与#define最大的差别在于:前者在堆栈分配了空间,而后者只是把具体数值直接传递到目标变量罢了。或者说,const的常量是一个Run-Time的概念,他在程序中确确实实的存在并可以被调用、传递。而#define常量则是一个Compile-Time概念,它的生命周期止于编译期:在实际程序中他只是一个常数、一个命令中的参数,没有实际的存在。
const常量存在于程序的数据段,#define常量存在于程序的代码段。
至于两者的优缺点,要看具体的情况了。一般的常数应用,笔者个人认为#define是一个更好的选择:
i.从run-time的角度来看,他在空间上和时间上都有很好优势。
ii.从compile-time的角度来看,类似m=t*10的代码不会被编译器优化,t*10的操作需要在run-time执行。而#define的常量会被合并(在上例中T*10将被0x82取代)。
但是:如果你需要粗鲁的修改常数的值,那就得使用const了,因为后者在程序中没有实际的存在。(其实应该说修改数据段比代码段要简单^_^)。
有关#define的用法
1.简单的define定义
#define MAXTIME 1000
程序中遇到MAXTIME就会当作1000来处理.
一个简单的MAXTIME就定义好了,它代表1000,如果在程序里面写
if(i<MAXTIME){.........}
编译器在处理这个代码之前会对MAXTIME进行处理替换为1000。
这样的定义看起来类似于普通的常量定义CONST,但也有着不同,因为define的定义更像是简单的文本替换,而不是作为一个量来使用,这个问题在下面反映的尤为突出。
2.define的“函数定义”
define可以像函数那样接受一些参数,如下
#define max(x,y) (x)>(y)?(x):(y);
这个定义就将返回两个数中较大的那个,看到了吗?因为这个“函数”没有类型检查,就好像一个函数模板似的,当然,它绝对没有模板那么安全就是了。可以作为一个简单的模板来使用而已。
但是这样做的话存在隐患,例子如下:
#define Add(a,b) a+b;
在一般使用的时候是没有问题的,但是如果遇到如:c * Add(a,b) * d的时候就会出现问题,代数式的本意是a+b然后去和c,d相乘,但是因为使用了define(它只是一个简单的替换),所以式子实际上变成了
c*a + b*d
另外举一个例子:
#define pin (int*);
pin a,b;
本意是a和b都是int型指针,但是实际上变成int* a,b;
a是int型指针,而b是int型变量。
这时应该使用typedef来代替define,这样a和b就都是int型指针了。
所以我们在定义的时候,养成一个良好的习惯,建议所有的层次都要加括号。
3.宏的单行定义
#define A(x) T_##x
#define B(x) #@x
#define C(x) #x
我们假设:x=1,则有:
A(1)------)T_1
B(1)------)‘1‘
C(1)------)"1"
4.define的多行定义
define可以替代多行的代码,例如MFC中的宏定义(非常的经典,虽然让人看了恶心)
#define MACRO(arg1, arg2) do { \
/* declarations */ \
stmt1; \
stmt2; \
/* ... */ \
} while(0) /* (no trailing ; ) */
关键是要在每一个换行的时候加上一个"\"
5.在大规模的开发过程中,特别是跨平台和系统的软件里,define最重要的功能是条件编译
就是:
#ifdef WINDOWS
......
......
#endif
#ifdef LINUX
......
......
#endif
可以在编译的时候通过#define设置编译环境
6.如何定义宏、取消宏
//定义宏
#define [MacroName] [MacroValue]
//取消宏
#undef [MacroName]
普通宏
#define PI (3.1415926)
带参数的宏
#define max(a,b) ((a)>(b)? (a),(b))
关键是十分容易产生错误,包括机器和人理解上的差异等等。
7.条件编译
#ifdef XXX…(#else) …#endif
例如 #ifdef DV22_AUX_INPUT
#define AUX_MODE 3
#else
#define AUY_MODE 3
#endif
#ifndef XXX … (#else) … #endif
8.头文件(.h)可以被头文件或C文件包含
重复包含(重复定义)
由于头文件包含可以嵌套,那么C文件就有可能包含多次同一个头文件,就可能出现重复定义的问题的。
通过条件编译开关来避免重复包含(重复定义)
例如
#ifndef __headerfileXXX__
#define __headerfileXXX__
…
文件内容
…
#endif
typedef和#define的用法与区别
一、typedef的用法
在C/C++语言中,typedef常用来定义一个标识符及关键字的别名,它是语言编译过程的一部分,但它并不实际分配内存空间,实例像:
typedef int INT;
typedef int ARRAY[10];
typedef (int*) pINT;
typedef可以增强程序的可读性,以及标识符的灵活性,但它也有“非直观性”等缺点。
二、#define的用法
#define为一宏定义语句,通常用它来定义常量(包括无参量与带参量),以及用来实现那些“表面似和善、背后一长串”的宏,它本身并不在编译过程中进行,而是在这之前(预处理过程)就已经完成了,但也因此难以发现潜在的错误及其它代码维护问题,它的实例像:
#define INT int
#define TRUE 1
#define Add(a,b) ((a)+(b));
#define Loop_10 for (int i=0; i<10; i++)
在Scott Meyer的Effective C++一书的条款1中有关于#define语句弊端的分析,以及好的替代方法,大家可参看。
三、typedef与#define的区别
从以上的概念便也能基本清楚,typedef只是为了增加可读性而为标识符另起的新名称(仅仅只是个别名),而#define原本在C中是为了定义常量,到了C++,const、enum、inline的出现使它也渐渐成为了起别名的工具。有时很容易搞不清楚与typedef两者到底该用哪个好,如#define INT int这样的语句,用typedef一样可以完成,用哪个好呢?我主张用typedef,因为在早期的许多C编译器中这条语句是非法的,只是现今的编译器又做了扩充。为了尽可能地兼容,一般都遵循#define定义“可读”的常量以及一些宏语句的任务,而typedef则常用来定义关键字、冗长的类型的别名。
宏定义只是简单的字符串代换(原地扩展),而typedef则不是原地扩展,它的新名字具有一定的封装性,以致于新命名的标识符具有更易定义变量的功能。请看上面第一大点代码的第三行:
typedef (int*) pINT;
以及下面这行:
#define pINT2 int*
效果相同?实则不同!实践中见差别:pINT a,b;的效果同int *a; int *b;表示定义了两个整型指针变量。
而pINT2 a,b;的效果同int *a, b; 表示定义了一个整型指针变量a和整型变量b。
注意:两者还有一个行尾;号的区别哦!
Typedef 声明有助于创建平台无关类型,甚至能隐藏复杂和难以理解的语法。不管怎样,使用 typedef 能为代码带来意想不到的好处,通过本文你可以学习用 typedef 避免缺欠,从而使代码更健壮。
typedef 声明,简称 typedef,为现有类型创建一个新的名字。比如人们常常使用 typedef 来编写更美观和可读的代码。所谓美观,意指 typedef 能隐藏笨拙的语法构造以及平台相关的数据类型,从而增强可移植性和以及未来的可维护性。本文下面将竭尽全力来揭示 typedef 强大功能以及如何避免一些常见的陷阱。
如何创建平台无关的数据类型,隐藏笨拙且难以理解的语法?
使用 typedefs 为现有类型创建同义字。定义易于记忆的类型名
typedef 使用最多的地方是创建易于记忆的类型名,用它来归档程序员的意图。类型出现在所声明的变量名字中,位于 ‘‘typedef‘‘ 关键字右边。例如:typedef int size; 此声明定义了一个 int 的同义字,名字为 size。注意 typedef 并不创建新的类型。它仅仅为现有类型添加一个同义字。你可以在任何需要 int 的上下文中使用 size:
void measure(size * psz);
size array[4];
size len = file.getlength();
std::vector <size> vs; typedef 还可以掩饰符合类型,如指针和数组。例如,你不用象下面这样重复定义有 81 个字符元素的数组:char line[81];
char text[81];定义一个 typedef,每当要用到相同类型和大小的数组时,可以这样:typedef char Line[81];
Line text, secondline;
getline(text);同样,可以象下面这样隐藏指针语法:typedef char * pstr;
int mystrcmp(pstr, pstr); 这里将带我们到达第一个 typedef 陷阱。标准函数 strcmp()有两个‘const char *‘类型的参数。因此,它可能会误导人们象下面这样声明 mystrcmp():int mystrcmp(const pstr, const pstr); 这是错误的,按照顺序,‘const pstr‘被解释为‘char * const‘(一个指向 char 的常量指针),而不是‘const char *‘(指向常量 char 的指针)。这个问题很容易解决:
typedef const char * cpstr;
int mystrcmp(cpstr, cpstr); // 现在是正确的记住:不管什么时候,只要为指针声明 typedef,那么都要在最终的 typedef 名称中加一个 const,以使得该指针本身是常量,而不是对象。代码简化
上面讨论的 typedef 行为有点像 #define 宏,用其实际类型替代同义字。不同点是 typedef 在编译时被解释,因此让编译器来应付超越预处理器能力的文本替换。例如:typedef int (*PF) (const char *, const char *); 这个声明引入了 PF 类型作为函数指针的同义字,该函数有两个 const char * 类型的参数以及一个 int 类型的返回值。如果要使用下列形式的函数声明,那么上述这个 typedef 是不可或缺的:
PF Register(PF pf); Register() 的参数是一个 PF 类型的回调函数,返回某个函数的地址,其署名与先前注册的名字相同。做一次深呼吸。下面我展示一下如果不用 typedef,我们是如何实现这个声明的:
int (*Register (int (*pf)(const char *, const char *)))
(const char *, const char *); 很少有程序员理解它是什么意思,更不用说这种费解的代码所带来的出错风险了。显然,这里使用 typedef 不是一种特权,而是一种必需。持怀疑态度的人可能会问:"OK,有人还会写这样的代码吗?",快速浏览一下揭示 signal()函数的头文件 <csinal>,一个有同样接口的函数。typedef 和存储类关键字(storage class specifier)
这种说法是不是有点令人惊讶,typedef 就像 auto,extern,mutable,static,和 register 一样,是一个存储类关键字。这并是说 typedef 会真正影响对象的存储特性;它只是说在语句构成上,typedef 声明看起来象 static,extern 等类型的变量声明。下面将带到第二个陷阱:typedef register int FAST_COUNTER; // 错误 编译通不过。问题出在你不能在声明中有多个存储类关键字。因为符号 typedef 已经占据了存储类关键字的位置,在 typedef 声明中不能用 register(或任何其它存储类关键字)。
促进跨平台开发
typedef 有另外一个重要的用途,那就是定义机器无关的类型,例如,你可以定义一个叫 REAL 的浮点类型,在目标机器上它可以i获得最高的精度:typedef long double REAL; 在不支持 long double 的机器上,该 typedef 看起来会是下面这样:
typedef double REAL; 并且,在连 double 都不支持的机器上,该 typedef 看起来会是这样: 、
typedef float REAL; 你不用对源代码做任何修改,便可以在每一种平台上编译这个使用 REAL 类型的应用程序。唯一要改的是 typedef 本身。在大多数情况下,甚至这个微小的变动完全都可以通过奇妙的条件编译来自动实现。不是吗? 标准库广泛地使用 typedef 来创建这样的平台无关类型:size_t,ptrdiff 和 fpos_t 就是其中的例子。此外,象 std::string 和 std::ofstream 这样的 typedef 还隐藏了长长的,难以理解的模板特化语法,例如:basic_string<char, char_traits<char>,allocator<char>> 和 basic_ofstream<char, char_traits<char>>。
作者简介
Danny Kalev 是一名通过认证的系统分析师,专攻 C++ 和形式语言理论的软件工程师。1997 年到 2000 年期间,他是 C++ 标准委员会成员。最近他以优异成绩完成了他在普通语言学研究方面的硕士论文。 业余时间他喜欢听古典音乐,阅读维多利亚时期的文学作品,研究 Hittite、Basque 和 Irish Gaelic 这样的自然语言。其它兴趣包括考古和地理。Danny 时常到一些 C++ 论坛并定期为不同的 C++ 网站和杂志撰写文章。他还在教育机构讲授程序设计语言和应用语言课程。
C语言中typedef用法
1. 基本解释typedef为C语言的关键字,作用是为一种数据类型定义一个新名字。这里的数据类型包括内部数据类型(int,char等)和自定义的数据类型(struct等)。
在编程中使用typedef目的一般有两个,一个是给变量一个易记且意义明确的新名字,另一个是简化一些比较复杂的类型声明。
至于typedef有什么微妙之处,请你接着看下面对几个问题的具体阐述。
2. typedef & 结构的问题当用下面的代码定义一个结构时,编译器报了一个错误,为什么呢?莫非C语言不允许在结构中包含指向它自己的指针吗?请你先猜想一下,然后看下文说明:
typedef struct tagNode
{
char *pItem;
pNode pNext;
} *pNode;
答案与分析:1、typedef的最简单使用
typedef long byte_4;
给已知数据类型long起个新名字,叫byte_4。2、 typedef与结构结合使用
typedef struct tagMyStruct
{
int iNum;
long lLength;
} MyStruct;
这语句实际上完成两个操作:1) 定义一个新的结构类型
struct tagMyStruct
{
int iNum;
long lLength;
};
分析:tagMyStruct称为“tag”,即“标签”,实际上是一个临时名字,struct 关键字和tagMyStruct一起,构成了这个结构类型,不论是否有typedef,这个结构都存在。
我们可以用struct tagMyStruct varName来定义变量,但要注意,使用tagMyStruct varName来定义变量是不对的,因为struct 和tagMyStruct合在一起才能表示一个结构类型。
2) typedef为这个新的结构起了一个名字,叫MyStruct。typedef struct tagMyStruct MyStruct;
因此,MyStruct实际上相当于struct tagMyStruct,我们可以使用MyStruct varName来定义变量。
答案与分析
C语言当然允许在结构中包含指向它自己的指针,我们可以在建立链表等数据结构的实现上看到无数这样的例子,上述代码的根本问题在于typedef的应用。
根据我们上面的阐述可以知道:新结构建立的过程中遇到了pNext域的声明,类型是pNode,要知道pNode表示的是类型的新名字,那么在类型本身还没有建立完成的时候,这个类型的新名字也还不存在,也就是说这个时候编译器根本不认识pNode。解决这个问题的方法有多种:
1)、
typedef struct tagNode
{
char *pItem;
struct tagNode *pNext;
} *pNode;
2)、
typedef struct tagNode *pNode;
struct tagNode
{
char *pItem;
pNode pNext;
};
注意:在这个例子中,你用typedef给一个还未完全声明的类型起新名字。C语言编译器支持这种做法。3)、规范做法:
struct tagNode
{
char *pItem;
struct tagNode *pNext;
};
typedef struct tagNode *pNode;
3. typedef & #define的问题有下面两种定义pStr数据类型的方法,两者有什么不同?哪一种更好一点?
typedef char *pStr;
#define pStr char *;
答案与分析:
通常讲,typedef要比#define要好,特别是在有指针的场合。请看例子:typedef char *pStr1;
#define pStr2 char *;
pStr1 s1, s2;
pStr2 s3, s4;
在上述的变量定义中,s1、s2、s3都被定义为char *,而s4则定义成了char,不是我们所预期的指针变量,根本原因就在于#define只是简单的字符串替换而typedef则是为一个类型起新名字。#define用法例子:
#define f(x) x*x
main( )
{
int a=6,b=2,c;
c=f(a) / f(b);
printf("%d \n",c);
}
以下程序的输出结果是: 36。
因为如此原因,在许多C语言编程规范中提到使用#define定义时,如果定义中包含表达式,必须使用括号,则上述定义应该如下定义才对:#define f(x) (x*x)
当然,如果你使用typedef就没有这样的问题。
4. typedef & #define的另一例下面的代码中编译器会报一个错误,你知道是哪个语句错了吗?
typedef char * pStr;
char string[4] = "abc";
const char *p1 = string;
const pStr p2 = string;
p1++;
p2++;
答案与分析:
是p2++出错了。这个问题再一次提醒我们:typedef和#define不同,它不是简单的文本替换。上述代码中const pStr p2并不等于const char * p2。const pStr p2和const long x本质上没有区别,都是对变量进行只读限制,只不过此处变量p2的数据类型是我们自己定义的而不是系统固有类型而已。因此,const pStr p2的含义是:限定数据类型为char *的变量p2为只读,因此p2++错误。#define与typedef引申谈
1) #define宏定义有一个特别的长处:可以使用 #ifdef ,#ifndef等来进行逻辑判断,还可以使用#undef来取消定义。
2) typedef也有一个特别的长处:它符合范围规则,使用typedef定义的变量类型其作用范围限制在所定义的函数或者文件内(取决于此变量定义的位置),而宏定义则没有这种特性。
5. typedef & 复杂的变量声明
在编程实践中,尤其是看别人代码的时候,常常会遇到比较复杂的变量声明,使用typedef作简化自有其价值,比如:
下面是三个变量的声明,我想使用typdef分别给它们定义一个别名,请问该如何做?>1:int *(*a[5])(int, char*);
>2:void (*b[10]) (void (*)());
>3. doube(*)() (*pa)[9];
答案与分析:对复杂变量建立一个类型别名的方法很简单,你只要在传统的变量声明表达式里用类型名替代变量名,然后把关键字typedef加在该语句的开头就行了。
>1:int *(*a[5])(int, char*);
//pFun是我们建的一个类型别名
typedef int *(*pFun)(int, char*);
//使用定义的新类型来声明对象,等价于int* (*a[5])(int, char*);
pFun a[5];>2:void (*b[10]) (void (*)());
//首先为上面表达式蓝色部分声明一个新类型
typedef void (*pFunParam)();
//整体声明一个新类型
typedef void (*pFun)(pFunParam);
//使用定义的新类型来声明对象,等价于void (*b[10]) (void (*)());
pFun b[10];>3. doube(*)() (*pa)[9];
//首先为上面表达式蓝色部分声明一个新类型
typedef double(*pFun)();
//整体声明一个新类型
typedef pFun (*pFunParam)[9];
//使用定义的新类型来声明对象,等价于doube(*)() (*pa)[9];
pFunParam pa;
标签:
原文地址:http://blog.csdn.net/chepwavege/article/details/51270637