标签:
在5.2及更早版本的PHP中,没有专门的垃圾回收器GC(Garbage Collection),引擎在判断一个变量空间是否能够被释放的时候是依据这个变量的zval的refcount的值,如果refcount为0,那么变量的空间可以被释放,否则就不释放,这是一种非常简单的GC实现。然而在这种简单的GC实现方案中,出现了意想不到的变量内存泄漏情况(Bug:http://bugs.php.net/bug.php?id=33595),引擎将无法回收这些内存,于是在PHP5.3中出现了新的GC,新的GC有专门的机制负责清理垃圾数据,防止内存泄漏。本文将详细的阐述PHP5.3中新的GC运行机制。
目前很少有详细的资料介绍新的GC,本文将是目前国内最为详细的从源码角度介绍PHP5.3中GC原理的文章。其中关于垃圾产生以及算法简介部分由笔者根据手册翻译而来,当然其中融入了本人的一些看法。手册中相关内容:Garbage Collection
首先我们需要定义一下“垃圾”的概念,新的GC负责清理的垃圾是指变量的容器zval还存在,但是又没有任何变量名指向此zval。因此GC判断是否为垃圾的一个重要标准是有没有变量名指向变量容器zval。
假设我们有一段PHP代码,使用了一个临时变量$tmp存储了一个字符串,在处理完字符串之后,就不需要这个$tmp变量了,$tmp变量对于我们来说可以算是一个“垃圾”了,但是对于GC来说,$tmp其实并不是一个垃圾,$tmp变量对我们没有意义,但是这个变量实际还存在,$tmp符号依然指向它所对应的zval,GC会认为PHP代码中可能还会使用到此变量,所以不会将其定义为垃圾。
那么如果我们在PHP代码中使用完$tmp后,调用unset删除这个变量,那么$tmp是不是就成为一个垃圾了呢。很可惜,GC仍然不认为$tmp是一个垃圾,因为$tmp在unset之后,refcount减少1变成了0(这里假设没有别的变量和$tmp指向相同的zval),这个时候GC会直接将$tmp对应的zval的内存空间释放,$tmp和其对应的zval就根本不存在了。此时的$tmp也不是新的GC所要对付的那种“垃圾”。那么新的GC究竟要对付什么样的垃圾呢,下面我们将生产一个这样的垃圾。
如果读者已经阅读了变量内部存储相关的内容,想必对refcount和isref这些变量内部的信息有了一定的了解。这里我们将结合手册中的一个例子来介绍垃圾的产生过程:
<?php
\$a = "new string";
?>
在这么简单的一个代码中,$a变量内部存储信息为:a: (refcount=1, is_ref=0)=’new string’
当把$a赋值给另外一个变量的时候,$a对应的zval的refcount会加1。
<?php
\$a = "new string";
\$b = \$a;
?>
此时$a和$b变量对应的内部存储信息为 a,b: (refcount=2, is_ref=0)=’new string’
当我们用unset删除$b变量的时候,$b对应的zval的refcount会减少1
<?php
\$a = "new string"; //a: (refcount=1, is_ref=0)=‘new string‘
\$b = \$a; //a,b: (refcount=2, is_ref=0)=‘new string‘
unset(\$b); //a: (refcount=1, is_ref=0)=‘new string‘
?>
对于普通的变量来说,这一切似乎很正常,但是在复合类型变量(数组和对象)中,会发生比较有意思的事情:
<?php
\$a = array(‘meaning‘ => ‘life‘, ‘number‘ => 42);
?>
a的内部存储信息为:
a: (refcount=1, is_ref=0)=array (
‘meaning‘ => (refcount=1, is_ref=0)=‘life‘,
‘number‘ => (refcount=1, is_ref=0)=42
)
数组变量本身($a)在引擎内部实际上是一个哈希表,这张表中有两个zval项 meaning和number,所以实际上那一行代码中一共生成了3个zval,这3个zval都遵循变量的引用和计数原则,用图来表示:
下面在$a中添加一个元素,并将现有的一个元素的值赋给新的元素:
<?php
\$a = array(‘meaning‘ => ‘life‘, ‘number‘ => 42);
\$a[‘life‘] = \$a[‘meaning‘];
?>
那么$a的内部存储为:
a: (refcount=1, is_ref=0)=array (
‘meaning‘ => (refcount=2, is_ref=0)=‘life‘,
‘number‘ => (refcount=1, is_ref=0)=42,
‘life‘ => (refcount=2, is_ref=0)=‘life‘
)
其中的meaning元素和life元素之指向同一个zval的:
现在,如果我们试一下,将数组的引用赋值给数组中的一个元素,有意思的事情就发生了:
<?php
\$a = array(‘one‘);
\$a[] = &\$a;
?>
这样$a数组就有两个元素,一个索引为0,值为字符one,另外一个索引为1,为$a自身的引用,内部存储如下:
a: (refcount=2, is_ref=1)=array (
0 => (refcount=1, is_ref=0)=‘one‘,
1 => (refcount=2, is_ref=1)=...
)
“…”表示1指向a自身,是一个环形引用:
这个时候我们对$a进行unset,那么$a会从符号表中删除,同时$a指向的zval的refcount减少1
<?php
\$a = array(‘one‘);
\$a[] = &\$a;
unset(\$a);
?>
那么问题也就产生了,$a已经不在符号表中了,用户无法再访问此变量,但是$a之前指向的zval的refcount变为1而不是0,因此不能被回收,这样产生了内存泄露:
这样,这么一个zval就成为了一个真是意义的垃圾了,新的GC要做的工作就是清理这种垃圾。
为解决这种垃圾,产生了新的GC。
在PHP5.3版本中,使用了专门GC机制清理垃圾,在之前的版本中是没有专门的GC,那么垃圾产生的时候,没有办法清理,内存就白白浪费掉了。在PHP5.3源代码中多了以下文件:{PHPSRC}/Zend/zend_gc.h {PHPSRC}/Zend/zend_gc.c, 这里就是新的GC的实现,我们先简单的介绍一下算法思路,然后再从源码的角度详细介绍引擎中如何实现这个算法的。
在较新的PHP手册中有简单的介绍新的GC使用的垃圾清理算法,这个算法名为 Concurrent Cycle Collection in Reference Counted Systems , 这里不详细介绍此算法,根据手册中的内容来先简单的介绍一下思路:
首先我们有几个基本的准则:
只有在准则3下,GC才会把zval收集起来,然后通过新的算法来判断此zval是否为垃圾。那么如何判断这么一个变量是否为真正的垃圾呢?
简单的说,就是对此zval中的每个元素进行一次refcount减1操作,操作完成之后,如果zval的refcount=0,那么这个zval就是一个垃圾。这个原理咋看起来很简单,但是又不是那么容易理解,起初笔者也无法理解其含义,直到挖掘了源代码之后才算是了解。如果你现在不理解没有关系,后面会详细介绍,这里先把这算法的几个步骤描叙一下,首先引用手册中的一张图:
这ABCD四个过程是手册中对这个算法的介绍,这还不是那么容易理解其中的原理,这个算法到底是个什么意思呢?我自己的理解是这样的:
比如还是前面那个变成垃圾的数组$a对应的zval,命名为zval_a, 如果没有执行unset, zval_a的refcount为2,分别由$a和$a中的索引1指向这个zval。 用算法对这个数组中的所有元素(索引0和索引1)的zval的refcount进行减1操作,由于索引1对应的就是zval_a,所以这个时候zval_a的refcount应该变成了1,这样zval_a就不是一个垃圾。如果执行了unset操作,zval_a的refcount就是1,由zval_a中的索引1指向zval_a,用算法对数组中的所有元素(索引0和索引1)的zval的refcount进行减1操作,这样zval_a的refcount就会变成0,于是就发现zval_a是一个垃圾了。 算法就这样发现了顽固的垃圾数据。
举了这个例子,读者大概应该能够知道其中的端倪:
对于一个包含环形引用的数组,对数组中包含的每个元素的zval进行减1操作,之后如果发现数组自身的zval的refcount变成了0,那么可以判断这个数组是一个垃圾。
这个道理其实很简单,假设数组a的refcount等于m, a中有n个元素又指向a,如果m等于n,那么算法的结果是m减n,m-n=0,那么a就是垃圾,如果m>n,那么算法的结果m-n>0,所以a就不是垃圾了。
m=n代表什么? 代表a的refcount都来自数组a自身包含的zval元素,代表a之外没有任何变量指向它,代表用户代码空间中无法再访问到a所对应的zval,代表a是泄漏的内存,因此GC将a这个垃圾回收了。
在PHP中,GC默认是开启的,你可以通过ini文件中的 zend.enable_gc 项来开启或则关闭GC。当GC开启的时候,垃圾分析算法将在节点缓冲区(roots buffer)满了之后启动。缓冲区默认可以放10,000个节点,当然你也可以通过修改Zend/zend_gc.c中的GC_ROOT_BUFFER_MAX_ENTRIES 来改变这个数值,需要重新编译链接PHP。当GC关闭的时候,垃圾分析算法就不会运行,但是相关节点还会被放入节点缓冲区,这个时候如果缓冲区节点已经放满,那么新的节点就不会被记录下来,这些没有被记录下来的节点就永远也不会被垃圾分析算法分析。如果这些节点中有循环引用,那么有可能产生内存泄漏。之所以在GC关闭的时候还要记录这些节点,是因为简单的记录这些节点比在每次产生节点的时候判断GC是否开启更快,另外GC是可以在脚本运行中开启的,所以记录下这些节点,在代码运行的某个时候如果又开启了GC,这些节点就能被分析算法分析。当然垃圾分析算法是一个比较耗时的操作。
在PHP代码中我们可以通过gc_enable()和gc_disable()函数来开启和关闭GC,也可以通过调用gc_collect_cycles()在节点缓冲区未满的情况下强制执行垃圾分析算法。这样用户就可以在程序的某些部分关闭或则开启GC,也可强制进行垃圾分析算法。
1.防止泄漏节省内存
新的GC算法的目的就是为了防止循环引用的变量引起的内存泄漏问题,在PHP中GC算法,当节点缓冲区满了之后,垃圾分析算法会启动,并且会释放掉发现的垃圾,从而回收内存,在PHP手册上给了一段代码和内存使用状况图:
<?php
class Foo
{
public \$var = ‘3.1415962654‘;
}
\$baseMemory = memory_get_usage();
for ( \$i = 0; \$i <= 100000; \$i++ )
{
\$a = new Foo;
\$a->self = \$a;
if ( \$i % 500 === 0 )
{
echo sprintf( ‘%8d: ‘, \$i ), memory_get_usage() - \$baseMemory, "/n";
}
}
?>
这段代码的循环体中,新建了一个对象变量,并且用对象的一个成员指向了自己,这样就形成了一个循环引用,当进入下一次循环的时候,又一次给对象变量重新赋值,这样会导致之前的对象变量内存泄漏,在这个例子里面有两个变量泄漏了,一个是对象本身,另外一个是对象中的成员self,但是这两个变量只有对象会作为垃圾收集器的节点被放入缓冲区(因为重新赋值相当于对它进行了unset操作,满足前面的准则3)。在这里我们进行了100,000次循环,而GC在缓冲区中有10,000节点的时候会启动垃圾分析算法,所以这里一共会进行10次的垃圾分析算法。从图中可以清晰的看到,在5.3版本PHP中,每次GC的垃圾分析算法被触发后,内存会有一个明显的减少。而在5.2版本的PHP中,内存使用量会一直增加。
2.运行效率影响
启用了新的GC后,垃圾分析算法将是一个比较耗时的操作,手册中给了一段测试代码:
<?php
class Foo
{
public \$var = ‘3.1415962654‘;
}
for ( \$i = 0; \$i <= 1000000; \$i++ )
{
\$a = new Foo;
\$a->self = \$a;
}
echo memory_get_peak_usage(), "/n";
?>
然后分别在GC开启和关闭的情况下执行这段代码:
time php -dzend.enable_gc=0 -dmemory_limit=-1 -n example2.php
# and
time php -dzend.enable_gc=1 -dmemory_limit=-1 -n example2.php
最终在该机器上,第一次执行大概使用10.7秒,第二次执行大概使用11.4秒,性能大约降低7%,不过内存的使用量降低了98%,从931M降低到了10M。当然这并不是一个比较科学的测试方法,但是也能说明一定的问题。这种代码测试的是一种极端恶劣条件,实际代码中,特别是在WEB的应用中,很难出现大量循环引用,GC的分析算法的启动不会这么频繁,小规模的代码中甚至很少有机会启动GC分析算法。
总结:
当GC的垃圾分析算法执行的时候,PHP脚本的效率会受到一定的影响,但是小规模的代码一般不会有这个机会运行这个算法。如果一旦脚本中GC分析算法开始运行了,那么将花费少量的时间节省出来了大量的内存,是一件非常划算的事情。新的GC对一些长期运行的PHP脚本效果更好,比如PHP的DAEMON守护进程,或则PHP-GTK进程等等。
标签:
原文地址:http://blog.csdn.net/ghostlv/article/details/51278061