标签:
1.SHA512算法简介
算法的输入时最大长度小于2^128bits的消息,输出是512bits的消息摘要。算法主要分为5个步骤:
(1)附加填充位。填充消息使其长度模1024与896同余,即使消息已经满足上述长度要求,仍然要进行填充,因此填充比特在1~1024之间。填充的内容是一个1和后续的0组成。
(2)附加长度。在消息后附加一份128bits的块,将其视为128bits的无符号整数,它包含填充前消息的长度。
(3)初始化Hash缓冲区
(4)以1024bits的分组为单位处理消息。
(5)输出消息摘要
2.SHA512算法c语言实现
本代码来自于SHA算法规范RFC4634
规范链接:http://www.faqs.org/rfcs/rfc4634.html
c实现包含两个部分SHA512.h和SHA512.c
———————SHA512.h—————————-
#ifndef _SHA512_H_
#define _SHA512_H_
#define uint64_t unsigned long long
#define uint32_t unsigned int
#define uint8_t unsigned char
#define int_least16_t unsigned short
enum SHA_enum{
shaSuccess = 0,
shaNull, /* Null pointer parameter */
shaInputTooLong, /* input data too long */
shaStateError, /* called Input after FinalBits or Result */
shaBadParam /* passed a bad parameter */
};
#define SHA512_Message_Block_Size 128
#define SHA512HashSize 64
#define SHA512HashSizeBits 512
#define SHA_Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))//~按位取反
#define SHA_Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define SHA_Parity(x, y, z) ((x) ^ (y) ^ (z))
/* Define the SHA shift, rotate left and rotate right macro */
#define SHA512_SHR(bits,word) (((uint64_t)(word)) >> (bits))
#define SHA512_ROTR(bits,word) ((((uint64_t)(word)) >> (bits)) | (((uint64_t)(word)) << (64 - (bits))))
/* Define the SHA SIGMA and sigma macros */
#define SHA512_SIGMA0(word) \
(SHA512_ROTR(28, word) ^ SHA512_ROTR(34, word) ^ SHA512_ROTR(39, word))
#define SHA512_SIGMA1(word) \
(SHA512_ROTR(14, word) ^ SHA512_ROTR(18, word) ^ SHA512_ROTR(41, word))
#define SHA512_sigma0(word) \
(SHA512_ROTR(1, word) ^ SHA512_ROTR(8, word) ^ SHA512_SHR(7, word))
#define SHA512_sigma1(word) \
(SHA512_ROTR(19, word) ^ SHA512_ROTR(61, word) ^ SHA512_SHR(6, word))
typedef struct SHA512Context {
uint64_t Intermediate_Hash[SHA512HashSize / 8]; /* Message Digest */
uint64_t Length_Low, Length_High; /* Message length in bits */
int_least16_t Message_Block_Index; /* Message_Block array index */
/* 1024-bit message blocks */
uint8_t Message_Block[SHA512_Message_Block_Size];
int Computed; /* Is the digest computed?*/
int Corrupted; /* Is the digest corrupted? */
} SHA512Context;
extern int SHA512Reset(SHA512Context *);//Reset the hash context state
extern int SHA512Input(SHA512Context *, const uint8_t *bytes, unsigned int bytecount);//Incorporate bytecount octets into the hash.
extern int SHA512FinalBits(SHA512Context *, const uint8_t bits, unsigned int bitcount);//Incorporate bitcount bits into the hash. The bits are in the upper portion of the octet.SHA$$$Input() cannot be called after this.
extern int SHA512Result(SHA512Context *, uint8_t Message_Digest[SHA512HashSize]);//Do the final calculations on the hash and copy the value into Message_Digest.
#endif
———————SHA512.c————-
#include "stdafx.h"
#include "SHA512.h"
#include "string.h"
#define test1 "abc"
static uint64_t SHA512_H0[] = {
0x6A09E667F3BCC908ll, 0xBB67AE8584CAA73Bll, 0x3C6EF372FE94F82Bll,
0xA54FF53A5F1D36F1ll, 0x510E527FADE682D1ll, 0x9B05688C2B3E6C1Fll,
0x1F83D9ABFB41BD6Bll, 0x5BE0CD19137E2179ll
};
/*
* add "length" to the length
*/
static uint64_t addTemp;
#define SHA384_512AddLength(context, length) (addTemp = context->Length_Low, context->Corrupted = ((context->Length_Low += length) < addTemp) && (++context->Length_High == 0) ? 1 : 0)
#define zfy(a,b) (a=1,b=100)
/*
* SHA384_512ProcessMessageBlock
*
* Description:
* This helper function will process the next 1024 bits of the
* message stored in the Message_Block array.
*
* Parameters:
* context: [in/out]
* The SHA context to update
*
* Returns:
* Nothing.
*
* Comments:
* Many of the variable names in this code, especially the
* single character names, were used because those were the
* names used in the publication.
*
*
*/
static void SHA384_512ProcessMessageBlock(SHA512Context *context)
{
/* Constants defined in FIPS-180-2, section 4.2.3 */
#ifdef USE_32BIT_ONLY
static const uint32_t K[80 * 2] = {
0x428A2F98, 0xD728AE22, 0x71374491, 0x23EF65CD, 0xB5C0FBCF,
0xEC4D3B2F, 0xE9B5DBA5, 0x8189DBBC, 0x3956C25B, 0xF348B538,
0x59F111F1, 0xB605D019, 0x923F82A4, 0xAF194F9B, 0xAB1C5ED5,
0xDA6D8118, 0xD807AA98, 0xA3030242, 0x12835B01, 0x45706FBE,
0x243185BE, 0x4EE4B28C, 0x550C7DC3, 0xD5FFB4E2, 0x72BE5D74,
0xF27B896F, 0x80DEB1FE, 0x3B1696B1, 0x9BDC06A7, 0x25C71235,
0xC19BF174, 0xCF692694, 0xE49B69C1, 0x9EF14AD2, 0xEFBE4786,
0x384F25E3, 0x0FC19DC6, 0x8B8CD5B5, 0x240CA1CC, 0x77AC9C65,
0x2DE92C6F, 0x592B0275, 0x4A7484AA, 0x6EA6E483, 0x5CB0A9DC,
0xBD41FBD4, 0x76F988DA, 0x831153B5, 0x983E5152, 0xEE66DFAB,
0xA831C66D, 0x2DB43210, 0xB00327C8, 0x98FB213F, 0xBF597FC7,
0xBEEF0EE4, 0xC6E00BF3, 0x3DA88FC2, 0xD5A79147, 0x930AA725,
0x06CA6351, 0xE003826F, 0x14292967, 0x0A0E6E70, 0x27B70A85,
0x46D22FFC, 0x2E1B2138, 0x5C26C926, 0x4D2C6DFC, 0x5AC42AED,
0x53380D13, 0x9D95B3DF, 0x650A7354, 0x8BAF63DE, 0x766A0ABB,
0x3C77B2A8, 0x81C2C92E, 0x47EDAEE6, 0x92722C85, 0x1482353B,
0xA2BFE8A1, 0x4CF10364, 0xA81A664B, 0xBC423001, 0xC24B8B70,
0xD0F89791, 0xC76C51A3, 0x0654BE30, 0xD192E819, 0xD6EF5218,
0xD6990624, 0x5565A910, 0xF40E3585, 0x5771202A, 0x106AA070,
0x32BBD1B8, 0x19A4C116, 0xB8D2D0C8, 0x1E376C08, 0x5141AB53,
0x2748774C, 0xDF8EEB99, 0x34B0BCB5, 0xE19B48A8, 0x391C0CB3,
0xC5C95A63, 0x4ED8AA4A, 0xE3418ACB, 0x5B9CCA4F, 0x7763E373,
0x682E6FF3, 0xD6B2B8A3, 0x748F82EE, 0x5DEFB2FC, 0x78A5636F,
0x43172F60, 0x84C87814, 0xA1F0AB72, 0x8CC70208, 0x1A6439EC,
0x90BEFFFA, 0x23631E28, 0xA4506CEB, 0xDE82BDE9, 0xBEF9A3F7,
0xB2C67915, 0xC67178F2, 0xE372532B, 0xCA273ECE, 0xEA26619C,
0xD186B8C7, 0x21C0C207, 0xEADA7DD6, 0xCDE0EB1E, 0xF57D4F7F,
0xEE6ED178, 0x06F067AA, 0x72176FBA, 0x0A637DC5, 0xA2C898A6,
0x113F9804, 0xBEF90DAE, 0x1B710B35, 0x131C471B, 0x28DB77F5,
0x23047D84, 0x32CAAB7B, 0x40C72493, 0x3C9EBE0A, 0x15C9BEBC,
0x431D67C4, 0x9C100D4C, 0x4CC5D4BE, 0xCB3E42B6, 0x597F299C,
0xFC657E2A, 0x5FCB6FAB, 0x3AD6FAEC, 0x6C44198C, 0x4A475817
};
int t, t2, t8; /* Loop counter */
uint32_t temp1[2], temp2[2], /* Temporary word values */
temp3[2], temp4[2], temp5[2];
uint32_t W[2 * 80]; /* Word sequence */
uint32_t A[2], B[2], C[2], D[2], /* Word buffers */
E[2], F[2], G[2], H[2];
/* Initialize the first 16 words in the array W */
for (t = t2 = t8 = 0; t < 16; t++, t8 += 8) {
W[t2++] = ((((uint32_t)context->Message_Block[t8])) << 24) |
((((uint32_t)context->Message_Block[t8 + 1])) << 16) |
((((uint32_t)context->Message_Block[t8 + 2])) << 8) |
((((uint32_t)context->Message_Block[t8 + 3])));
W[t2++] = ((((uint32_t)context->Message_Block[t8 + 4])) << 24) |
((((uint32_t)context->Message_Block[t8 + 5])) << 16) |
((((uint32_t)context->Message_Block[t8 + 6])) << 8) |
((((uint32_t)context->Message_Block[t8 + 7])));
}
for (t = 16; t < 80; t++, t2 += 2) {
/* W[t] = SHA512_sigma1(W[t-2]) + W[t-7] +
SHA512_sigma0(W[t-15]) + W[t-16]; */
uint32_t *Wt2 = &W[t2 - 2 * 2];
uint32_t *Wt7 = &W[t2 - 7 * 2];
uint32_t *Wt15 = &W[t2 - 15 * 2];
uint32_t *Wt16 = &W[t2 - 16 * 2];
SHA512_sigma1(Wt2, temp1);
SHA512_ADD(temp1, Wt7, temp2);
SHA512_sigma0(Wt15, temp1);
SHA512_ADD(temp1, Wt16, temp3);
SHA512_ADD(temp2, temp3, &W[t2]);
}
A[0] = context->Intermediate_Hash[0];
A[1] = context->Intermediate_Hash[1];
B[0] = context->Intermediate_Hash[2];
B[1] = context->Intermediate_Hash[3];
C[0] = context->Intermediate_Hash[4];
C[1] = context->Intermediate_Hash[5];
D[0] = context->Intermediate_Hash[6];
D[1] = context->Intermediate_Hash[7];
E[0] = context->Intermediate_Hash[8];
E[1] = context->Intermediate_Hash[9];
F[0] = context->Intermediate_Hash[10];
F[1] = context->Intermediate_Hash[11];
G[0] = context->Intermediate_Hash[12];
G[1] = context->Intermediate_Hash[13];
H[0] = context->Intermediate_Hash[14];
H[1] = context->Intermediate_Hash[15];
for (t = t2 = 0; t < 80; t++, t2 += 2) {
/*
* temp1 = H + SHA512_SIGMA1(E) + SHA_Ch(E,F,G) + K[t] + W[t];
*/
SHA512_SIGMA1(E, temp1);
SHA512_ADD(H, temp1, temp2);
SHA_Ch(E, F, G, temp3);
SHA512_ADD(temp2, temp3, temp4);
SHA512_ADD(&K[t2], &W[t2], temp5);
SHA512_ADD(temp4, temp5, temp1);
/*
* temp2 = SHA512_SIGMA0(A) + SHA_Maj(A,B,C);
*/
SHA512_SIGMA0(A, temp3);
SHA_Maj(A, B, C, temp4);
SHA512_ADD(temp3, temp4, temp2);
H[0] = G[0]; H[1] = G[1];
G[0] = F[0]; G[1] = F[1];
F[0] = E[0]; F[1] = E[1];
SHA512_ADD(D, temp1, E);
D[0] = C[0]; D[1] = C[1];
C[0] = B[0]; C[1] = B[1];
B[0] = A[0]; B[1] = A[1];
SHA512_ADD(temp1, temp2, A);
}
SHA512_ADDTO2(&context->Intermediate_Hash[0], A);
SHA512_ADDTO2(&context->Intermediate_Hash[2], B);
SHA512_ADDTO2(&context->Intermediate_Hash[4], C);
SHA512_ADDTO2(&context->Intermediate_Hash[6], D);
SHA512_ADDTO2(&context->Intermediate_Hash[8], E);
SHA512_ADDTO2(&context->Intermediate_Hash[10], F);
Eastlake 3rd & Hansen Informational[Page 62]
RFC 4634 SHAs and HMAC - SHAs July 2006
SHA512_ADDTO2(&context->Intermediate_Hash[12], G);
SHA512_ADDTO2(&context->Intermediate_Hash[14], H);
#else /* !USE_32BIT_ONLY */
static const uint64_t K[80] = {
0x428A2F98D728AE22ll, 0x7137449123EF65CDll, 0xB5C0FBCFEC4D3B2Fll,
0xE9B5DBA58189DBBCll, 0x3956C25BF348B538ll, 0x59F111F1B605D019ll,
0x923F82A4AF194F9Bll, 0xAB1C5ED5DA6D8118ll, 0xD807AA98A3030242ll,
0x12835B0145706FBEll, 0x243185BE4EE4B28Cll, 0x550C7DC3D5FFB4E2ll,
0x72BE5D74F27B896Fll, 0x80DEB1FE3B1696B1ll, 0x9BDC06A725C71235ll,
0xC19BF174CF692694ll, 0xE49B69C19EF14AD2ll, 0xEFBE4786384F25E3ll,
0x0FC19DC68B8CD5B5ll, 0x240CA1CC77AC9C65ll, 0x2DE92C6F592B0275ll,
0x4A7484AA6EA6E483ll, 0x5CB0A9DCBD41FBD4ll, 0x76F988DA831153B5ll,
0x983E5152EE66DFABll, 0xA831C66D2DB43210ll, 0xB00327C898FB213Fll,
0xBF597FC7BEEF0EE4ll, 0xC6E00BF33DA88FC2ll, 0xD5A79147930AA725ll,
0x06CA6351E003826Fll, 0x142929670A0E6E70ll, 0x27B70A8546D22FFCll,
0x2E1B21385C26C926ll, 0x4D2C6DFC5AC42AEDll, 0x53380D139D95B3DFll,
0x650A73548BAF63DEll, 0x766A0ABB3C77B2A8ll, 0x81C2C92E47EDAEE6ll,
0x92722C851482353Bll, 0xA2BFE8A14CF10364ll, 0xA81A664BBC423001ll,
0xC24B8B70D0F89791ll, 0xC76C51A30654BE30ll, 0xD192E819D6EF5218ll,
0xD69906245565A910ll, 0xF40E35855771202All, 0x106AA07032BBD1B8ll,
0x19A4C116B8D2D0C8ll, 0x1E376C085141AB53ll, 0x2748774CDF8EEB99ll,
0x34B0BCB5E19B48A8ll, 0x391C0CB3C5C95A63ll, 0x4ED8AA4AE3418ACBll,
0x5B9CCA4F7763E373ll, 0x682E6FF3D6B2B8A3ll, 0x748F82EE5DEFB2FCll,
0x78A5636F43172F60ll, 0x84C87814A1F0AB72ll, 0x8CC702081A6439ECll,
0x90BEFFFA23631E28ll, 0xA4506CEBDE82BDE9ll, 0xBEF9A3F7B2C67915ll,
0xC67178F2E372532Bll, 0xCA273ECEEA26619Cll, 0xD186B8C721C0C207ll,
0xEADA7DD6CDE0EB1Ell, 0xF57D4F7FEE6ED178ll, 0x06F067AA72176FBAll,
0x0A637DC5A2C898A6ll, 0x113F9804BEF90DAEll, 0x1B710B35131C471Bll,
0x28DB77F523047D84ll, 0x32CAAB7B40C72493ll, 0x3C9EBE0A15C9BEBCll,
0x431D67C49C100D4Cll, 0x4CC5D4BECB3E42B6ll, 0x597F299CFC657E2All,
0x5FCB6FAB3AD6FAECll, 0x6C44198C4A475817ll
};
int t, t8; /* Loop counter */
uint64_t temp1, temp2; /* Temporary word value */
uint64_t W[80]; /* Word sequence */
uint64_t A, B, C, D, E, F, G, H; /* Word buffers */
/*
* Initialize the first 16 words in the array W
*/
for (t = t8 = 0; t < 16; t++, t8 += 8)
W[t] = ((uint64_t)(context->Message_Block[t8]) << 56) |
((uint64_t)(context->Message_Block[t8 + 1]) << 48) |
((uint64_t)(context->Message_Block[t8 + 2]) << 40) |
((uint64_t)(context->Message_Block[t8 + 3]) << 32) |
((uint64_t)(context->Message_Block[t8 + 4]) << 24) |
((uint64_t)(context->Message_Block[t8 + 5]) << 16) |
((uint64_t)(context->Message_Block[t8 + 6]) << 8) |
((uint64_t)(context->Message_Block[t8 + 7]));
for (t = 16; t < 80; t++)
W[t] = SHA512_sigma1(W[t - 2]) + W[t - 7] +
SHA512_sigma0(W[t - 15]) + W[t - 16];
A = context->Intermediate_Hash[0];
B = context->Intermediate_Hash[1];
C = context->Intermediate_Hash[2];
D = context->Intermediate_Hash[3];
E = context->Intermediate_Hash[4];
F = context->Intermediate_Hash[5];
G = context->Intermediate_Hash[6];
H = context->Intermediate_Hash[7];
for (t = 0; t < 80; t++) {
temp1 = H + SHA512_SIGMA1(E) + SHA_Ch(E, F, G) + K[t] + W[t];
temp2 = SHA512_SIGMA0(A) + SHA_Maj(A, B, C);
H = G;
G = F;
F = E;
E = D + temp1;
D = C;
C = B;
B = A;
A = temp1 + temp2;
}
context->Intermediate_Hash[0] += A;
context->Intermediate_Hash[1] += B;
context->Intermediate_Hash[2] += C;
context->Intermediate_Hash[3] += D;
context->Intermediate_Hash[4] += E;
context->Intermediate_Hash[5] += F;
context->Intermediate_Hash[6] += G;
context->Intermediate_Hash[7] += H;
#endif /* USE_32BIT_ONLY */
context->Message_Block_Index = 0;
}
/*
* SHA384_512PadMessage
*
* Description:
* According to the standard, the message must be padded to an
* even 1024 bits. The first padding bit must be a ‘1‘. The
* last 128 bits represent the length of the original message.
* All bits in between should be 0. This helper function will
* pad the message according to those rules by filling the
* Message_Block array accordingly. When it returns, it can be
* assumed that the message digest has been computed.
*
* Parameters:
* context: [in/out]
* The context to pad
* Pad_Byte: [in]
* The last byte to add to the digest before the 0-padding
* and length. This will contain the last bits of the message
* followed by another single bit. If the message was an
* exact multiple of 8-bits long, Pad_Byte will be 0x80.
*
* Returns:
* Nothing.
*
*/
static void SHA384_512PadMessage(SHA512Context *context, uint8_t Pad_Byte)
{
/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second
* block.
*/
if (context->Message_Block_Index >= (SHA512_Message_Block_Size - 16)) {
context->Message_Block[context->Message_Block_Index++] = Pad_Byte;
while (context->Message_Block_Index < SHA512_Message_Block_Size)
context->Message_Block[context->Message_Block_Index++] = 0;
SHA384_512ProcessMessageBlock(context);
}
else
context->Message_Block[context->Message_Block_Index++] = Pad_Byte;
while (context->Message_Block_Index < (SHA512_Message_Block_Size - 16))
context->Message_Block[context->Message_Block_Index++] = 0;
/*
* Store the message length as the last 16 octets
*/
#ifdef USE_32BIT_ONLY
context->Message_Block[112] = (uint8_t)(context->Length[0] >> 24);
context->Message_Block[113] = (uint8_t)(context->Length[0] >> 16);
context->Message_Block[114] = (uint8_t)(context->Length[0] >> 8);
context->Message_Block[115] = (uint8_t)(context->Length[0]);
context->Message_Block[116] = (uint8_t)(context->Length[1] >> 24);
context->Message_Block[117] = (uint8_t)(context->Length[1] >> 16);
context->Message_Block[118] = (uint8_t)(context->Length[1] >> 8);
context->Message_Block[119] = (uint8_t)(context->Length[1]);
context->Message_Block[120] = (uint8_t)(context->Length[2] >> 24);
context->Message_Block[121] = (uint8_t)(context->Length[2] >> 16);
context->Message_Block[122] = (uint8_t)(context->Length[2] >> 8);
context->Message_Block[123] = (uint8_t)(context->Length[2]);
context->Message_Block[124] = (uint8_t)(context->Length[3] >> 24);
context->Message_Block[125] = (uint8_t)(context->Length[3] >> 16);
context->Message_Block[126] = (uint8_t)(context->Length[3] >> 8);
context->Message_Block[127] = (uint8_t)(context->Length[3]);
#else /* !USE_32BIT_ONLY */
context->Message_Block[112] = (uint8_t)(context->Length_High >> 56);
context->Message_Block[113] = (uint8_t)(context->Length_High >> 48);
context->Message_Block[114] = (uint8_t)(context->Length_High >> 40);
context->Message_Block[115] = (uint8_t)(context->Length_High >> 32);
context->Message_Block[116] = (uint8_t)(context->Length_High >> 24);
context->Message_Block[117] = (uint8_t)(context->Length_High >> 16);
context->Message_Block[118] = (uint8_t)(context->Length_High >> 8);
context->Message_Block[119] = (uint8_t)(context->Length_High);
context->Message_Block[120] = (uint8_t)(context->Length_Low >> 56);
context->Message_Block[121] = (uint8_t)(context->Length_Low >> 48);
context->Message_Block[122] = (uint8_t)(context->Length_Low >> 40);
context->Message_Block[123] = (uint8_t)(context->Length_Low >> 32);
context->Message_Block[124] = (uint8_t)(context->Length_Low >> 24);
context->Message_Block[125] = (uint8_t)(context->Length_Low >> 16);
context->Message_Block[126] = (uint8_t)(context->Length_Low >> 8);
context->Message_Block[127] = (uint8_t)(context->Length_Low);
#endif /* USE_32BIT_ONLY */
SHA384_512ProcessMessageBlock(context);
}
/*
* SHA384_512Finalize
*
* Description:
* This helper function finishes off the digest calculations.
Eastlake 3rd & Hansen Informational [Page 56]
RFC 4634 SHAs and HMAC-SHAs July 2006
*
* Parameters:
* context: [in/out]
* The SHA context to update
* Pad_Byte: [in]
* The last byte to add to the digest before the 0-padding
* and length. This will contain the last bits of the message
* followed by another single bit. If the message was an
* exact multiple of 8-bits long, Pad_Byte will be 0x80.
*
* Returns:
* sha Error Code.
*
*/
static void SHA384_512Finalize(SHA512Context *context, uint8_t Pad_Byte)
{
int_least16_t i;
SHA384_512PadMessage(context, Pad_Byte);
/* message may be sensitive, clear it out */
for (i = 0; i < SHA512_Message_Block_Size; ++i)
context->Message_Block[i] = 0;
#ifdef USE_32BIT_ONLY /* and clear length */
context->Length[0] = context->Length[1] = 0;
context->Length[2] = context->Length[3] = 0;
#else /* !USE_32BIT_ONLY */
context->Length_Low = 0;
context->Length_High = 0;
#endif /* USE_32BIT_ONLY */
context->Computed = 1;
}
/*
* SHA384_512ResultN
*
* Description:
* This helper function will return the 384-bit or 512-bit message
Eastlake 3rd & Hansen Informational [Page 65]
RFC 4634 SHAs and HMAC-SHAs July 2006
* digest into the Message_Digest array provided by the caller.
* NOTE: The first octet of hash is stored in the 0th element,
* the last octet of hash in the 48th/64th element.
*
* Parameters:
* context: [in/out]
* The context to use to calculate the SHA hash.
* Message_Digest: [out]
* Where the digest is returned.
* HashSize: [in]
* The size of the hash, either 48 or 64.
*
* Returns:
* sha Error Code.
*
*/
static int SHA384_512ResultN(SHA512Context *context,uint8_t Message_Digest[], int HashSize)
{
int i;
#ifdef USE_32BIT_ONLY
int i2;
#endif /* USE_32BIT_ONLY */
if (!context || !Message_Digest)
return shaNull;
if (context->Corrupted)
return context->Corrupted;
if (!context->Computed)
SHA384_512Finalize(context, 0x80);
#ifdef USE_32BIT_ONLY
for (i = i2 = 0; i < HashSize;) {
Message_Digest[i++] = (uint8_t)(context->Intermediate_Hash[i2] >> 24);
Message_Digest[i++] = (uint8_t)(context->Intermediate_Hash[i2] >> 16);
Message_Digest[i++] = (uint8_t)(context->Intermediate_Hash[i2] >> 8);
Message_Digest[i++] = (uint8_t)(context->Intermediate_Hash[i2++]);
Message_Digest[i++] = (uint8_t)(context->Intermediate_Hash[i2] >> 24);
Message_Digest[i++] = (uint8_t)(context->Intermediate_Hash[i2] >> 16);
Message_Digest[i++] = (uint8_t)(context->Intermediate_Hash[i2] >> 8);
Message_Digest[i++] = (uint8_t)(context->Intermediate_Hash[i2++]);
}
#else /* !USE_32BIT_ONLY */
for (i = 0; i < HashSize; ++i)
Message_Digest[i] = (uint8_t)(context->Intermediate_Hash[i >> 3] >> 8 * (7 - (i % 8)));
#endif /* USE_32BIT_ONLY */
return shaSuccess;
}
/*
* SHA512Reset
*
* Description:
* This function will initialize the SHA512Context in preparation
* for computing a new SHA512 message digest.
*
* Parameters:
* context: [in/out]
* The context to reset.
*
* Returns:
* sha Error Code.
*
*/
int SHA512Reset(SHA512Context *context)
{
int i;
if (!context)
return shaNull;
context->Message_Block_Index = 0;
context->Length_High = context->Length_Low = 0;
for (i = 0; i < SHA512HashSize / 8; i++)
context->Intermediate_Hash[i] = SHA512_H0[i];
context->Computed = 0;
context->Corrupted = 0;
return shaSuccess;
}
/*
* SHA512Input
*
* Description:
* This function accepts an array of octets as the next portion 字节数组
* of the message.
*
* Parameters:
* context: [in/out]
* The SHA context to update
* message_array: [in]
* An array of characters representing the next portion of
* the message.
* length: [in]
* The length of the message in message_array
*
* Returns:
* sha Error Code.
Eastlake 3rd & Hansen Informational [Page 54]
RFC 4634 SHAs and HMAC-SHAs July 2006
*
*/
int SHA512Input(SHA512Context *context, const uint8_t *message_array, unsigned int length)
{
if (!length)
return shaSuccess;
if (!context || !message_array)
return shaNull;
if (context->Computed) {
context->Corrupted = shaStateError;
return shaStateError;
}
if (context->Corrupted)
return context->Corrupted;
while (length-- && !context->Corrupted) {
context->Message_Block[context->Message_Block_Index++] =(*message_array & 0xFF);
if (!SHA384_512AddLength(context, 8) &&(context->Message_Block_Index == SHA512_Message_Block_Size))
SHA384_512ProcessMessageBlock(context);
message_array++;
}
return shaSuccess;
}
/*
* SHA512FinalBits
*
* Description:
* This function will add in any final bits of the message.
*
* Parameters:
* context: [in/out]
* The SHA context to update
* message_bits: [in]
* The final bits of the message, in the upper portion of the
* byte. (Use 0b###00000 instead of 0b00000### to input the
* three bits ###.)
* length: [in]
Eastlake 3rd & Hansen Informational [Page 55]
RFC 4634 SHAs and HMAC-SHAs July 2006
* The number of bits in message_bits, between 1 and 7.
*
* Returns:
* sha Error Code.
*
*/
int SHA512FinalBits(SHA512Context *context,const uint8_t message_bits, unsigned int length)
{
uint8_t masks[8] = {
/* 0 0b00000000 */ 0x00, /* 1 0b10000000 */ 0x80,
/* 2 0b11000000 */ 0xC0, /* 3 0b11100000 */ 0xE0,
/* 4 0b11110000 */ 0xF0, /* 5 0b11111000 */ 0xF8,
/* 6 0b11111100 */ 0xFC, /* 7 0b11111110 */ 0xFE
};
uint8_t markbit[8] = {
/* 0 0b10000000 */ 0x80, /* 1 0b01000000 */ 0x40,
/* 2 0b00100000 */ 0x20, /* 3 0b00010000 */ 0x10,
/* 4 0b00001000 */ 0x08, /* 5 0b00000100 */ 0x04,
/* 6 0b00000010 */ 0x02, /* 7 0b00000001 */ 0x01
};
if (!length)
return shaSuccess;
if (!context)
return shaNull;
if ((context->Computed) || (length >= 8) || (length == 0)) {
context->Corrupted = shaStateError;
return shaStateError;
}
if (context->Corrupted)
return context->Corrupted;
SHA384_512AddLength(context, length);
SHA384_512Finalize(context, (uint8_t)((message_bits & masks[length]) | markbit[length]));
return shaSuccess;
}
/*
* SHA512Result
*
* Description:
* This function will return the 512-bit message
* digest into the Message_Digest array provided by the caller.
* NOTE: The first octet of hash is stored in the 0th element,
* the last octet of hash in the 64th element.
*
* Parameters:
* context: [in/out]
* The context to use to calculate the SHA hash.
* Message_Digest: [out]
* Where the digest is returned.
*
* Returns:
* sha Error Code.
*
*/
int SHA512Result(SHA512Context *context, uint8_t Message_Digest[SHA512HashSize])
{
return SHA384_512ResultN(context, Message_Digest, SHA512HashSize);
}
static const char hexdigits[] = "0123456789ABCDEF";
int SHA512STR(SHA512Context *context, uint8_t Message_Digest[SHA512HashSize], const uint8_t *message_array){
int length = strlen((const char*)message_array);
SHA_enum err = shaSuccess;
err = (SHA_enum)SHA512Reset(context);
printf("SHA512_reset:%d\n", err);
err = (SHA_enum)SHA512Input(context, message_array, length);
printf("SHA512_Input:%d\n", err);
err = (SHA_enum)SHA512FinalBits(context, 0, 0);
printf("SHA512_Finalbits:%d\n", err);
err = (SHA_enum)SHA512Result(context, Message_Digest);
printf("SHA512_result:%d\n", err);
return 0;
}
int SHA512FILE(SHA512Context *context, uint8_t Message_Digest[SHA512HashSize], const char *filepath, int filesize){
FILE *fp;
errno_t err = 0;
uint8_t *message_array = new uint8_t(filesize);
if (err = fopen_s(&fp, filepath, "r")){
printf("open file error!");
return 0;
}
fgets((char*)message_array, filesize,fp);
SHA512STR(context, Message_Digest, message_array);
return 0;
}
int main(){
uint8_t Message_Digest[SHA512HashSize] = {};
SHA512Context *test = new SHA512Context;
uint8_t message_array[10] = "abc";
SHA512Reset(test);
SHA512Input(test, message_array, 3);//测试消息“abc”的长度是3个字节
SHA512FinalBits(test,0,0);//一般情况下这一句可以不用加,只有在消息长度(以bit为单位)不是8的整数倍时才用
SHA512Result(test, Message_Digest);
for (int i = 0; i < SHA512HashSize; ++i) {
putchar(hexdigits[(Message_Digest[i] >> 4) & 0xF]);
putchar(hexdigits[Message_Digest[i] & 0xF]);
putchar(‘ ‘);
}
return 0;
}
标签:
原文地址:http://blog.csdn.net/zfyseu1/article/details/51263546