标签:http ar div 算法 ui ef title ip
Giant Step-Astronauts(May‘n?椎名慶治)
阅读时可以听听这两首歌,加深对这个算法的理解。(Baby steps少女时代翻唱过,这个原唱反而不是很有名……Giant Step就比较碉,是一个假面骑士片的插曲,由超碉的May‘n和一个人建立的临时组合唱的,怕不怕)
这个主要是用来解决这个题:
A^x=B(mod C)(C是质数),都是整数,已知A、B、C求x。
我在网上看了好多介绍,觉得他们写得都不够碉,我看不懂…于是我也来写一发。
先把x=i*m+j,其中m=ceil(sqrt(C)),(ceil是向上取整)。
这样原式就变为A^(i*m+j)=B(mod C),
再变为A^j=B*A^(-m*i) (mod C),
先循环j=0~(C-1),把(A^j,j)加入hash表中,这个就是Baby Steps(现在可以播放Baby Steps-Varsity了)。然后我们再枚举等号右边,从hash表中找看看有没有,有的话就得到了一组i j,返回x=i*m+j,得到解。(原理我还没懂……懂了我会贴上来)
所以,接下来要解决的就是枚举B*A^(-m*i) (mod C)这一步。A^(-m*i)相当于1/(A^(m*i)),里面有除法,在mod里不能直接用除法,这时候我们就要求逆元。
/*百度百科:
对xA+yB=z,
变成这样xA = z - yB,取B=C(C就是我们要mod的那个)
推导出 xA % C = z %C
只要 z%C==1 时,就可以求出A的逆元x
但用exgcd求完,x可能是负数,还需要这样一下:x=(x%C+C)%C
//--exgcd介绍完毕--
再看我们的题目,
exgcd(A^(m*i) , C)=z,当C是质数的时候z肯定为1,这样exgcd求得的x就是逆元了。
因为x就是A^(m*i)的逆元,P/(A^(m*i))=P*x,所以
B*A^(-m*i) = B/(A^(m*i)) = B*x(mod C)
这样我们的式子A^j=B*A^(-m*i) (mod C)的等号右边就有了,就是B*x,就问你怕不怕!
枚举i,求出右边在hash里找,找到了就返回,无敌!
BSGS算法_Baby steps giant steps算法(无扩展)最强详解,你从未见过的详细,布布扣,bubuko.com
BSGS算法_Baby steps giant steps算法(无扩展)最强详解,你从未见过的详细
标签:http ar div 算法 ui ef title ip
原文地址:http://www.cnblogs.com/yuiffy/p/3877381.html