标签:
剧情提要:正剧开始:
星历2016年04月24日 12:16:07, 银河系厄尔斯星球中华帝国江南行省。
[工程师阿伟]正在和[机器小伟]一起研究[推理与证明]。
<span style="font-size:18px;">>>> 23.5 13.865424623862042 #海伦-秦九韶公式 def HQFormula(a, b, c): p = (a+b+c)/2; S = math.sqrt(p*(p-a)*(p-b)*(p-c)); return S; #例3 def tmp(): #a, b, c = 3, 4, 5 a, b, c = 3, 4, 5 S1= a*b/2 S2 = a*c/2 S3 = b*c/2 S4 = HQFormula((a*a+b*b)**0.5, (a*a+c*c)**0.5, (b*b+c*c)**0.5); print(S1+S2+S3, S4);</span>
<span style="font-size:18px;"> if (1) { var array = new Array(); array[0] = [1]; array[1] = [1,1]; for (var i = 2; i < 10; i++) { array[i] = [1]; for (var j = 1; j < i; j++) { array[i].push(array[i-1][j-1]+array[i-1][j]); } array[i].push(1); } var width = 600, height = 400; var x = width/2, y = 30; var measure = 0, s = ''; var len = array.length; for (var i = 0; i < len; i++) { s = array[i].join(' '); measure = plot.measureText(s); plot.fillText(s, x-measure/2, y, measure); y += 30; } }</span>
关于求二面角,小伟找到了这个公式:
<span style="font-size:18px;">>>> cos = 0.9218142082600806 角度是: 22.80723538641745 度 #[数] dihedral angle; #二面角余弦 def dihedral(): xyz = [-1.2999760,0.0173840,-0.7162670, 1.0107690,1.5229620,-0.0945670, 0.0932470,-1.0086090,1.6265070, -1.2280340,-1.4934410,1.8123150, 0.0932470,-1.0086090,1.6265070, 1.0734260,-1.5230970,2.5155820] #六个点 ax1 = xyz[0] ay1 = xyz[1] az1 = xyz[2] bx2 = xyz[3] by2 = xyz[4] bz2 = xyz[5] cx3 = xyz[6] cy3 = xyz[7] cz3 = xyz[8] dx1 = xyz[9] dy1 = xyz[10] dz1 = xyz[11] ex2 = xyz[12] ey2 = xyz[13] ez2 = xyz[14] fx3 = xyz[15] fy3 = xyz[16] fz3 = xyz[17] #面一法线 nx = ((cz3-az1)/(cy3-ay1)-(bz2-az1)/(by2-ay1))/((bx2-ax1)/(by2-ay1)-(cx3-ax1)/(cy3-ay1)) ny = ((cz3-az1)/(cx3-ax1)-(bz2-az1)/(bx2-ax1))/((by2-ay1)/(bx2-ax1)-(cy3-ay1)/(cx3-ax1)) nz = 1 #面二法线 mx = ((fz3-dz1)/(fy3-dy1)-(ez2-dz1)/(ey2-dy1))/((ex2-dx1)/(ey2-dy1)-(fx3-dx1)/(fy3-dy1)) my = ((fz3-dz1)/(fx3-dx1)-(ez2-dz1)/(ex2-dx1))/((ey2-dy1)/(ex2-dx1)-(fy3-dy1)/(fx3-dx1)) mz = 1 cosAngle = (nx*mx+ny*my+nz*mz)/((math.sqrt(nx**2+ny**2+nz**2))*(math.sqrt(mx**2+my**2+mz**2))); print('cos = ', cosAngle, '角度是:', 180/math.pi*math.acos(cosAngle), '度'); </span>
比如对于下面这个例子:
求一下VAB和ABC的二面角
<span style="font-size:18px;">>>> [2, 5, 2, 5, 0, 1, 0, 0, 0, 1, 1, 5, 5, 0, 1, 0, 0, 0] cos = 0.4911436350228293 角度是: 60.584222864016645 度 #[数] dihedral angle; #二面角余弦 #暂时只能算不垂直或平行于xy, xz, yz任一平面的两平面的二面角 #公式寻找中... def dihedral(points): #points格式是 []*18, 分六个点,每个点x, y, z坐标排列 ''' xyz = [-1.2999760,0.0173840,-0.7162670, 1.0107690,1.5229620,-0.0945670, 0.0932470,-1.0086090,1.6265070, -1.2280340,-1.4934410,1.8123150, 0.0932470,-1.0086090,1.6265070, 1.0734260,-1.5230970,2.5155820] ''' if (len(points) != 18): return 'inf'; xyz = points; #六个点 ax1 = xyz[0] ay1 = xyz[1] az1 = xyz[2] bx2 = xyz[3] by2 = xyz[4] bz2 = xyz[5] cx3 = xyz[6] cy3 = xyz[7] cz3 = xyz[8] dx1 = xyz[9] dy1 = xyz[10] dz1 = xyz[11] ex2 = xyz[12] ey2 = xyz[13] ez2 = xyz[14] fx3 = xyz[15] fy3 = xyz[16] fz3 = xyz[17] #面一法线 nx = ((cz3-az1)/(cy3-ay1)-(bz2-az1)/(by2-ay1))/((bx2-ax1)/(by2-ay1)-(cx3-ax1)/(cy3-ay1)) ny = ((cz3-az1)/(cx3-ax1)-(bz2-az1)/(bx2-ax1))/((by2-ay1)/(bx2-ax1)-(cy3-ay1)/(cx3-ax1)) nz = 1 #面二法线 mx = ((fz3-dz1)/(fy3-dy1)-(ez2-dz1)/(ey2-dy1))/((ex2-dx1)/(ey2-dy1)-(fx3-dx1)/(fy3-dy1)) my = ((fz3-dz1)/(fx3-dx1)-(ez2-dz1)/(ex2-dx1))/((ey2-dy1)/(ex2-dx1)-(fy3-dy1)/(fx3-dx1)) mz = 1 cosAngle = (nx*mx+ny*my+nz*mz)/((math.sqrt(nx**2+ny**2+nz**2))*(math.sqrt(mx**2+my**2+mz**2))); print('cos = ', cosAngle, '角度是:', 180/math.pi*math.acos(cosAngle), '度'); #求二面角 def tmp(): V = [2, 5, 2] A = [5, 0, 1] B = [0, 0, 0] C = [1, 1, 5] points = V+ A + B+ C+A+B; #print(len(points)); print(points); dihedral(points);</span>
再求一下VBC与ABC的,或是VAB与VBC的
<span style="font-size:18px;">>>> [2, 5, 2, 0, 0, 0, 1, 1, 5, 1, 1, 5, 5, 0, 1, 0, 0, 0] cos = -0.2558139534883721 角度是: 104.82182106205012 度 >>> ================================ RESTART ================================ >>> [2, 5, 2, 5, 0, 1, 1, 1, 5, 1, 1, 5, 5, 0, 1, 0, 0, 0] cos = -0.19218663979154185 角度是: 101.08042157684446 度</span>
先放着吧。
<span style="font-size:18px;"> if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,190); //坐标轴设定 var scaleX = 4*r, scaleY = 4*r; var spaceX = 2, spaceY = 2; var xS = -10, xE = 10; var yS = -10, yE = 10; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var array = [[2, 5, 2], [5, 0, 1], [0, 0, 0], [1, 1, 5]]; //array = shape.xyzSort(array); var size = array.length; var array2D = []; for (var i = 0; i < size; i++) { array2D.push(shape.point3D(array[i][0], array[i][1], array[i][2])); } //去除重复点 var pointArray = removeDuplicatedPoint(array2D); //无重复的点的数量 var points = pointArray.length; //得到距离阵列 //格式为[[点1序号,点2序号, 距离值], ...] var distanceArray = distanceSort(pointArray); //边的数量 var edges = distanceArray.length; //存放需要连通的边 var linkedArray = []; //连通的边的数量 var links = 0; //每个顶点相关的边的集合 var edgeOfVertex = []; for (var i = 0; i < points; i++) { //获得顶点相关的边的集合 edgeOfVertex = []; for (var j = 0; j < edges; j++) { if (distanceArray[j][0] == i || distanceArray[j][1] == i) { edgeOfVertex.push(distanceArray[j]); } } //根据起始点寻找最短长度的两条边 edgeOfVertex.sort(function(a, b) { return a[2] - b[2]; }); var choice = 4; if (edgeOfVertex.length > choice) { edgeOfVertex = edgeOfVertex.slice(0, choice); } linkedArray = linkedArray.concat(edgeOfVertex); } //document.write(linkedArray.join(' , ')+'<br/>'); linkedArray = removeDuplicatedPoint(linkedArray); links = linkedArray.length; //document.write(linkedArray.join(' , ')+'<br/>'); var startPoint, endPoint, x1, y1, x2, y2; //比例缩放 var scale = 40; for (var i = 0; i < links; i++) { startPoint = linkedArray[i][0]; endPoint = linkedArray[i][1]; x1 = pointArray[startPoint][0]; y1 = pointArray[startPoint][1]; x2 = pointArray[endPoint][0]; y2 = pointArray[endPoint][1]; shape.vectorDraw([[x1,y1], [x2, y2]], 'red', scale); } shape.pointDraw(pointArray, 'blue', scale, 1, 'VABC'); plot.setFillStyle('blue'); plot.fillText('向量图', -270, -170, 300); }</span>
本节到此结束,欲知后事如何,请看下回分解。
标签:
原文地址:http://blog.csdn.net/mwsister/article/details/51232897