标签:
剧情提要:正剧开始:
星历2016年04月23日 16:32:36, 银河系厄尔斯星球中华帝国江南行省。
[工程师阿伟]正在和[机器小伟]一起研究[导数及其应用]。
<span style="font-size:18px;">>>> [-3.000001001396413, -2.999998999442255] [4.999998999721811, 5.000000996346898] def taskFun(x): return x**2-7*x+15; def derivatives(x): epsilon = 1e-6; leftValue = taskFun(x-epsilon); rightValue = taskFun(x+epsilon); value = taskFun(x); leftLimit = (value-leftValue)/epsilon; rightLimit = (rightValue-value)/epsilon; return [leftLimit, rightLimit]; def tmp(): print(derivatives(2)); print(derivatives(6));</span>
<span style="font-size:18px;">>>> 函数在0.6点的左、右导数分别是:[0.29068008811083956, 0.290679765257984] 函数在1.2点的左、右导数分别是:[0.1831169299526536, 0.18311682836724685] def taskFun(x): return (3*x/(4*math.pi))**(1/3); def derivatives(x): epsilon = 1e-6; leftValue = taskFun(x-epsilon); rightValue = taskFun(x+epsilon); value = taskFun(x); leftLimit = (value-leftValue)/epsilon; rightLimit = (rightValue-value)/epsilon; return [leftLimit, rightLimit]; def tmp(): a = [0.6, 1.2]; for i in range(len(a)): print('函数在{0}点的左、右导数分别是:{1}'.format(a[i],derivatives(a[i])));</span>
<span style="font-size:18px;">>>> 函数在10点的左、右导数分别是:[0.07947403424246602, 0.07947403823926891] >>> 1.05**10*math.log(1.05) 0.07947403625517714 def taskFun(x): return (1+0.05)**x; def derivatives(x): epsilon = 1e-6; leftValue = taskFun(x-epsilon); rightValue = taskFun(x+epsilon); value = taskFun(x); leftLimit = (value-leftValue)/epsilon; rightLimit = (rightValue-value)/epsilon; return [leftLimit, rightLimit]; #例1 def tmp(): a = [10]; for i in range(len(a)): print('函数在{0}点的左、右导数分别是:{1}'.format(a[i],derivatives(a[i])));</span>
<span style="font-size:18px;">>>> 函数在自变量取值为90处的左、右导数分别是:[52.83999450966803, 52.84000519623078] 函数在自变量取值为98处的左、右导数分别是:[1320.9993362579553, 1321.0006572990096] def taskFun(x): return 5284/(100-x); def derivatives(x): epsilon = 1e-6; leftValue = taskFun(x-epsilon); rightValue = taskFun(x+epsilon); value = taskFun(x); leftLimit = (value-leftValue)/epsilon; rightLimit = (rightValue-value)/epsilon; return [leftLimit, rightLimit]; #例3 def tmp(): a = [90, 98]; for i in range(len(a)): print('函数在自变量取值为{0}处的左、右导数分别是:{1}'.format(a[i],derivatives(a[i])));</span>
<span style="font-size:18px;"> if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 2, spaceY = 0.3; var xS = -10, xE = 10; var yS = -10, yE = 10; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var transform = new Transform(); //存放函数图像上的点 var a = [], b = [], c = [], d = []; //需要显示的函数说明 var f1 = 'y=log_[2]x的导数', f2 = '', f3 = '', f4 = ''; var epsilon = 0.000001; var derivative = 0; //函数描点 for (var x = xS; x <= xE; x+=1) { derivative = (funTask(x+epsilon)-funTask(x))/epsilon; a.push([x, derivative]); } //存放临时数组 var tmp = []; //显示变换 if (a.length > 0) { a = transform.scale(transform.translate(a, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(a); shape.pointDraw(tmp, 'red'); tmp = [].concat(a); shape.multiLineDraw(tmp, 'pink'); plot.setFillStyle('red'); plot.fillText(f1, 100, -90, 200); } } } function funTask(x) { return Math.log(x)/Math.log(2); } function funTask(x) { return 2*Math.pow(Math.E, x); }</span>
<span style="font-size:18px;"> if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 2, spaceY = 200; var xS = -10, xE = 10; var yS = -1000, yE = 1000; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var transform = new Transform(); //存放函数图像上的点 var a = [], b = [], c = [], d = []; //需要显示的函数说明 var f1 = 'y=2x^5-3x^2-4的导数', f2 = '10x^4-6x', f3 = '', f4 = ''; var epsilon = 0.000001; var derivative = 0; //函数描点 for (var x = xS; x <= xE; x+=0.2) { //derivative = (funTask(x+epsilon)-funTask(x))/epsilon; // a.push([x, derivative]); b.push([x, funTask_2(x)]); } //存放临时数组 var tmp = []; //显示变换 if (a.length > 0) { a = transform.scale(transform.translate(a, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(a); shape.pointDraw(tmp, 'red'); tmp = [].concat(a); shape.multiLineDraw(tmp, 'pink'); plot.setFillStyle('red'); plot.fillText(f1, 100, -90, 200); } //显示变换 if (b.length > 0) { b = transform.scale(transform.translate(b, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(b); shape.pointDraw(tmp, 'blue'); tmp = [].concat(b); shape.multiLineDraw(tmp, '#22ccFF'); plot.setFillStyle('blue'); plot.fillText(f2, 100, -90, 200); } } } function funTask(x) { return 2*Math.pow(x, 5)-3*Math.pow(x, 2)-4; } function funTask_2(x) { return 10*Math.pow(x, 4)-6*x; } </span>
<span style="font-size:18px;"> if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 2, spaceY = 2; var xS = -10, xE = 10; var yS = -10, yE = 10; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var transform = new Transform(); //存放函数图像上的点 var a = [], b = [], c = [], d = []; //需要显示的函数说明 var f1 = 'y=3cos(x)-4sin(x)的导数', f2 = '10x^4-6x', f3 = '', f4 = ''; var epsilon = 0.000001; var derivative = 0; //函数描点 for (var x = xS; x <= xE; x+=0.5) { derivative = (funTask(x+epsilon)-funTask(x))/epsilon; a.push([x, derivative]); //b.push([x, funTask_2(x)]); } //存放临时数组 var tmp = []; //显示变换 if (a.length > 0) { a = transform.scale(transform.translate(a, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(a); shape.pointDraw(tmp, 'red'); tmp = [].concat(a); shape.multiLineDraw(tmp, 'pink'); plot.setFillStyle('red'); plot.fillText(f1, 100, -110, 200); } //显示变换 if (b.length > 0) { b = transform.scale(transform.translate(b, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(b); shape.pointDraw(tmp, 'blue'); tmp = [].concat(b); shape.multiLineDraw(tmp, '#22ccFF'); plot.setFillStyle('blue'); plot.fillText(f2, 100, -90, 200); } } } function funTask(x) { return 3*Math.cos(x)-4*Math.sin(x); } function funTask(x) { return Math.cos(x/3); }</span>
<span style="font-size:18px;"> if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 2, spaceY = 200; var xS = -10, xE = 10; var yS = -1000, yE = 1000; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var transform = new Transform(); //存放函数图像上的点 var a = [], b = [], c = [], d = []; //需要显示的函数说明 var f1 = 'y=x^3+2x^2+10x-20', f2 = '10x^4-6x', f3 = '', f4 = ''; var epsilon = 0.000001; var derivative = 0; //给定初始试探点 var x0 = 4, xResult = 0; //函数描点 for (var x = xS; x <= xE; x++) { a.push([x, funTask(x)]); } //牛顿法求零点 derivative = (funTask(x0+epsilon)-funTask(x0))/epsilon; xResult = x0-funTask(x0)/derivative; while (Math.abs((xResult-x0)/x0)>epsilon) { x0 = xResult; derivative = (funTask(x0+epsilon)-funTask(x0))/epsilon; xResult = x0 -funTask(x0)/derivative; } b.push([xResult, 0]); //存放临时数组 var tmp = []; //显示变换 if (a.length > 0) { a = transform.scale(transform.translate(a, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(a); shape.pointDraw(tmp, 'red'); tmp = [].concat(a); shape.multiLineDraw(tmp, 'pink'); plot.setFillStyle('red'); plot.fillText(f1, 100, -110, 200); } //显示变换 if (b.length > 0) { plot.setFillStyle('blue'); plot.fillText('零点坐标是:'+b[0][0].toFixed(3), 100, -90, 200); b = transform.scale(transform.translate(b, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(b); shape.pointDraw(tmp, 'blue'); } } } function funTask(x) { return Math.pow(x, 3)+2*Math.pow(x, 2)+10*x-20; } </span>
这是一张勉强能用的手写式,如果要想做成印刷上的多行立体形态,只怕是不容易。
当然,那就是公式编辑器的事了。
<span style="font-size:18px;"> if (1) { var mathText = new MathText(); //希腊字母表(存此用于Ctrl C/V //ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ //αβγδεζηθικλμνξοπρστυφχψω var s = [ 'lim_[Δt->0](h(2+Δt)-h(2))/(Δt) = k', 'lim_[Δx->0]Δy/Δx=lim_[Δt->0](f(x_[0]+Δx)-f(x_[0]))/Δx', 'f \'(x_[0])=lim_[Δx->0]Δy/Δx=lim_[Δx->0](f(x_[0]+Δx)-f(x_[0]))/Δx', 'S=lim_[Δx->0]Ξ_[i=1]^[n] f(ξ_[i])Δx=lim_[Δx->0]Ξ_[i=1]^[n] 1/nf(ξ_[i])=1/3', '[S]_[a]^[b] f(x)dx = lim_[n->[inf]]Ξ_[i=1]^[n] (b-a)/nf(ξ_[i])', '[S]_[a]^[b] f(x)dx = F(x) |_[a]^[b] = F(b)-F(a)', ]; var x =40, y=40; var r1 = 40; var len = s.length; for (var i = 0; i < len; i++) { if (s[i] == '') { if (x < 100) { x += 300; y-=r1*3; } else { x = 20; y += r1; } } else { mathText.printIntegral(s[i], x, y, '@'); y+=r1; } } } /** * @usage 数学表达式,代数式的书写 * @author mw * @date 2016年03月12日 星期六 11:05:12 * @param * @return * */ function MathText() { //上标标记形式为...^[内容]... //分数不进行处理, 根式不进行处理,都转成指数式进行 //特殊数学符号设想加\[alpha]进行转义,待续 //可以进行指数上标代数式的书写 //可扩展下标,待续 this.setNormalFont = function() { plot.setFont("normal normal normal 24px Times Lt Std"); } this.setScriptFont = function() { plot.setFont("italic normal bold 16px Dark Courier "); } this.print = function(text, xPos, yPos, style, splitChar) { splitChar = splitChar ? splitChar : '|'; xPos = xPos ? xPos : 0; yPos = yPos ? yPos : 0; style = style ? style : 'black'; plot.save() .setStrokeStyle(style) .setFillStyle(style); var s = text ? text : ''; if (s != '') { s = s.replace(/\/\//ig, '÷'); s = s.replace(/\[>=\]/ig, '≥'); s = s.replace(/\[<=\]/ig, '≤'); s = s.replace(/\[!=\]/ig, '≠'); s = s.replace(/\[PI\]/ig, 'π'); s = s.replace(/\[+-\]/ig, '±'); s = s.replace(/->/ig, '→'); s = s.replace(/<-/ig, '←'); s = s.replace(/<-/ig, '←'); s = s.replace(/Ξ/g, '\u2211'); } //字符串长度 var len = s.length; //不同字体大小设置在此 var r1 = 20; //单个字符暂存处 var c; //文本显示位置 var x = xPos, y = yPos; //正常文本暂存 var s0 = ''; //字符串打印长度 var measure; //记录上一个x位置,可记录三层 var xMem = [x, x, x]; //记录每一层的左括号位置 var bracketPos = [x, x, x]; //记录括号层次 var bracketsLevel = 0; //记录根号层次 var radicalLevel = 0; //记录每一层根号的起始位置和层次数的数组...[[start, end, level], ...] var radicalSpan = []; //设置正常字体 this.setNormalFont(); for (var i = 0; i < len; i++) { if (s[i] == '_' && s[i+1] == '[') { //下标开始 //下标标记形式为..._[内容]... if (s0 != '') { //先把正常字符打印出 if (r1 != 20) { //字体字号大小还在上标状态 r1 = 20; this.setNormalFont(); } measure = plot.measureText(s0); plot.fillText(s0, x, y, measure); s0 = ''; x += measure; } var subScript = ''; var j = 0; for (j = i+1; s[j]!=']'; j++) { if (s[j] != '[') { subScript+=s[j]; } } if (r1 != 10) {//正常字体状态,需要改为上标字体 r1 = 10; this.setScriptFont(); } measure = plot.measureText(subScript); plot.fillText(subScript, x, y+8, measure); if (j < len-1 && s[j+1] == '^') { } else { x += 1.2*measure; } i = j; } else if (s[i] == '^'&&s[i+1] == '[') { //上标开始 //上标标记形式为...^[内容]... if (s0 != '') { //先把正常字符打印出 if (r1 != 20) { //字体字号大小还在上标状态 r1 = 20; this.setNormalFont(); } measure = plot.measureText(s0); plot.fillText(s0, x, y, measure); s0 = ''; x += measure; } var upperScript = ''; var j = 0; for (j = i+1; s[j]!=']'; j++) { if (s[j] != '[') { upperScript+=s[j]; } } //二次根式 if (upperScript == '1/2' || upperScript == '0.5') { var x1, y1; if (i > 0 && s[i-1] == ')') { x1 = bracketPos[bracketsLevel]; } else { x1 = xMem[bracketsLevel]; } /* 存疑代码 if (radicalSpan == []) { radicalLevel = 0; radicalSpan.push([x1, x, radicalLevel]); } else { var len = radicalSpan.length; for (var k = 0; k < len; k++) { if (x1 < radicalSpan[k][0]) { radicalLevel = radicalSpan[k][2]+1; break; } if (k >= len-1) { radicalLevel = 0; } } radicalSpan.push([x1, x, radicalLevel]); }*/ y1 = y-20-5*radicalLevel; plot.save() .setLineWidth(1); plot.beginPath() .moveTo(x1-5, y+5) .lineTo(x1-8, y-3) .moveTo(x1-5, y+5) .lineTo(x1+5, y1) .moveTo(x1+5, y1) .lineTo(x, y1) .closePath() .stroke(); plot.restore(); } //向量符号 else if (upperScript == '->') { var x1, y1; if (i > 0 && s[i-1] == ')') { x1 = bracketPos[bracketsLevel]; } else { x1 = xMem[bracketsLevel]; } y1 = y-18-5*radicalLevel; plot.save() .setLineWidth(1); plot.beginPath() .moveTo(x1, y1) .lineTo(x+2, y1) .moveTo(x+2, y1) .lineTo(x-5, y1-3) .moveTo(x+2, y1) .lineTo(x-5, y1+3) .closePath() .stroke(); plot.restore(); } else { if (r1 != 10) {//正常字体状态,需要改为上标字体 r1 = 10; this.setScriptFont(); } measure = plot.measureText(upperScript); plot.fillText(upperScript, x, y-8, measure); if (j < len-1 && s[j+1] == '_') { } else { x += 1.2*measure; } } //直接跳跃过上标字符区段 i = j; } else { c = s[i]; if (c == ')') { s0 += c; bracketsLevel -= 1; } else if (c == '(') { //如果整个括号被开根式,根号在括号左边 bracketPos[bracketsLevel] = x + plot.measureText(s0); s0 += c; bracketsLevel+=1; //过了括号就是过了一道关,要刷新坐标 xMem[bracketsLevel] = x + plot.measureText(s0); } else if (c == '+' || c == '-' || c == '*' || c == '/' || c == '÷' || c == '=' || c == ' ') { if (c == '*') { if (i > 0 && ((s[i-1] == ')' && /[0-9]/.test(s[i-2]) || /[0-9]/.test(s[i-1]))) && ((s[i+1] == '(' && /[0-9]/.test(s[i+2])) || /[0-9]/.test(s[i+1]))) { //对于乘号前后都是数字的情况,把乘号改成叉号 c = ' \u00D7 '; } else { //对于代数式中,乘号改为点号 c = ' \u00B7 '; } } //如果是运算符后的数被开根式,根号在运算符右边 if (c == '-' || c == '/') { s0 += ' '+c+' '; } else { s0 += c; } if (bracketsLevel < 3) { xMem[bracketsLevel] = x+plot.measureText(s0); } } else if (c == splitChar) { //隔字符 if (bracketsLevel < 3) { xMem[bracketsLevel] = x+plot.measureText(s0)-3; } } else { s0 += c; } } } if (s0 != '') { //先把正常字符打印出 if (r1 != 20) { //字体字号大小还在上标状态 r1 = 20; this.setNormalFont(); } measure = plot.measureText(s0); plot.fillText(s0, x, y, measure); x += measure; } plot.restore(); } //集合符号,集合表达式的书写 this.printSet = function(text, xPos, yPos, style, splitChar) { //隔字符 splitChar = splitChar ? splitChar : '|'; var s = text ? text : ''; xPos = xPos ? xPos : 0; yPos = yPos ? yPos : 0; style = style ? style : 'black'; if (s != '') { //希腊字母表(存此用于Ctrl C/V //ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ //αβγδεζηθικλμνξοπρστυφχψω // s = s.replace(/\[B\]/ig, '\u2208'); //∈ s = s.replace(/\[NB\]/ig, '\u2209'); //不属于 s = s.replace(/\[S\]/ig, '\u2286'); //包含于(是子集) s = s.replace(/\[SS\]/ig, '\u2287'); //包含 s = s.replace(/\[ST\]/ig, '\u228A'); //真包含于(是真子集) s = s.replace(/\[SST\]/ig, '\u228B'); //真包含 s = s.replace(/\[UU\]/ig, '\u222A'); //并集 ,由于U表示全集,又常为下标,此处错开 s = s.replace(/\[I\]/ig, '\u2229'); //交集 s = s.replace(/\[C\]/ig, '\u2201'); //补集 s = s.replace(/\[INF\]/ig, '\u221E'); //无穷大 s = s.replace(/\[NULL\]/ig, '\u2205');//空集 s = s.replace(/\[&\]/ig, '\u2227');//且 s = s.replace(/\[\|\]/ig, '\u2228');//或 s = s.replace(/\[~\]/ig, '﹁');//非 s = s.replace(/\[ALL\]/ig, '\u2200');//全称量词 Universal quantifier s = s.replace(/\[Exist\]/ig, '\u2203');//存在量词 Existential quantifier } return this.print(s, xPos, yPos, style, splitChar); } //微积分符号 this.printIntegral = function(text, xPos, yPos, style, splitChar) { //隔字符 splitChar = splitChar ? splitChar : '|'; var s = text ? text : ''; xPos = xPos ? xPos : 0; yPos = yPos ? yPos : 0; style = style ? style : 'black'; if (s != '') { //希腊字母表(存此用于Ctrl C/V //ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ //αβγδεζηθικλμνξοπρστυφχψω // s = s.replace(/\[S\]/ig, '\u222B'); //定积分符号 一次 s = s.replace(/\[SS\]/ig, '\u222C');//定积分符号 二次 s = s.replace(/\[SSS\]/ig, '\u222C');//定积分符号 三次 s = s.replace(/\[INF\]/ig, '\u221E'); //无穷大 } return this.print(s, xPos, yPos, style, splitChar); } }</span>
本节到此结束,欲知后事如何,请看下回分解。
标签:
原文地址:http://blog.csdn.net/mwsister/article/details/51226935