码迷,mamicode.com
首页 > 其他好文 > 详细

HDU_1018_n(1e7)的阶乘的结果的位数

时间:2016-04-30 17:02:25      阅读:130      评论:0      收藏:0      [点我收藏+]

标签:

http://acm.hdu.edu.cn/showproblem.php?pid=1018

Big Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 33695    Accepted Submission(s): 15894


Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
 

 

Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
 

 

Output
The output contains the number of digits in the factorial of the integers appearing in the input.
 

 

Sample Input
2 10 20
 

 

Sample Output
7 19
 
任意一个正整数a的位数等于(int)log10(a) + 1;
对于任意一个给定的正整数a,
  假设10^(x-1)<=a<10^x,那么显然a的位数为x位,
  又因为
  log10(10^(x-1))<=log10(a)<(log10(10^x))
  即x-1<=log10(a)<x
  则(int)log10(a)=x-1,
  即(int)log10(a)+1=x
  即a的位数是(int)log10(a)+1
那么我们要求的就是
(int)log10(A)+1,而:
	log10(A)
        =log10(1*2*3*......n)  (根据log10(a*b) = log10(a) + log10(b)有)
        =log10(1)+log10(2)+log10(3)+......+log10(n)

总结一下:n的阶乘的位数等于
		  (int)(log10(1)+log10(2)+log10(3)+......+log10(n)) + 1

HDU_1018_n(1e7)的阶乘的结果的位数

标签:

原文地址:http://www.cnblogs.com/jasonlixuetao/p/5448892.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!