标签:
#include<stdio.h> #include<string.h> #include<algorithm> #include<math.h> #include<map> #include<iostream> using namespace std; #define jw 10 ///小小的总结了一下 ///没有循环的方式略,当有循环的时候,就要用到0.999999... = 1的知识了 ///0.99999.. = (9/10)+(9/100)+(9/1000)+(9/10000)+....+(9/10^n) /// = (1/10 + 1/100 + 1/1000 ...)*9 左边由等比数列求和公式得到1/9 * (1 - 1/10^n); /// n->+oo,左式为1/9,证明成立,代码中第二种方式原理与其一致 int gcd(int a,int b) { return b == 0 ? a : gcd(b, a % b); } int main() { char a[200]; while(~scanf("%s",a)) { int len = strlen(a); int pos1 = -1,pos2 = -1; for(int i = 0; i < len; i++) { if(a[i] == ‘(‘) { pos1 = i; } if(a[i] == ‘)‘) { pos2 = i; } } if(pos1 == pos2) { int sum = 0,num,tot = 0; for(int i = len-1;a[i] != ‘.‘;i--) { num = a[i] - ‘0‘; sum += powl(10,len-1-i) * num; tot++; } tot = powl(10,tot); // cout<<"sum = "<<sum<<endl; // cout<<"tot = "<<tot<<endl; int gc1 = gcd(tot,sum); cout<<sum/gc1<<"/"<<tot/gc1<<endl; } else { int sum1 = 0,tot1 = 0; for(int i = 2;a[i] != ‘(‘;i++) { sum1 *= jw; sum1 += a[i] - ‘0‘; tot1++; } int sum2 = 0,tot2 = 0; for(int i = pos1+1;i < pos2;i++) { sum2 *= jw; sum2 += a[i] - ‘0‘; tot2++; } tot1 = powl(10,tot1); tot2 = powl(10,tot2) - 1; int num1 = sum1 * tot2 + sum2; int num2 = tot1 * tot2; int gc2 = gcd(num1,num2); cout<<num1/gc2<<"/"<<num2/gc2<<endl; } } }
标签:
原文地址:http://www.cnblogs.com/jifahu/p/5449026.html