码迷,mamicode.com
首页 > 其他好文 > 详细

Hive学习笔记:基础语法

时间:2016-05-02 16:49:09      阅读:317      评论:0      收藏:0      [点我收藏+]

标签:

Hive基础语法

1、创建表 – 用户表

CREATE [EXTERNAL外部表] TABLE [IF NOT EXISTS 是否存在] HUserInfo (
userid int comment ‘用户Id’,
username string comment ‘用户名称’,
userpwd string comment ‘用户密码’,
createtime string comment ‘创建时间’
)
comment ‘用户信息表’
row format delimited fileds terminated by ‘\t’  -- 声明文件行分隔符
partitioned by (ds string comment 当前时间,用于分区字段)  --表示按什么字段进行分割,通常来说是按时间。用于增加分区
clustered by userid  --要排序的字段
sorted by username into 32 buckets  -- bucket(桶)排,序这里表示将id按照name进行排序,聚类汇总,然后分区划分到32个散列桶中。
stored as rcfile

hive目前支持三种方式:

    1)就是最普通的textfile,数据不做压缩,磁盘开销大,解析开销也大

    2)SquenceFIle,hadoop api提供的一种二进制API方式,其具有使用方便、可分割、可压缩等特点。

    3)rcfile行列存储结合的方式,它会首先将数据进行分块,保证同一个record在一个分块上,避免读一次记录需要读多个块。其次块数据列式存储,便于数据存储和快速的列存取。RCFILE由于采用是的列式存储,所以加载时候开销较大,但具有很好的查询响应、较好的压缩比。

location ‘/user/hive/test‘;  --改变表在hdfs中的位置,可不必先创建。

like Old_UserInfo  --复制一个空表,允许用户复制现有的表结构,但是不复制数据。

2、mysql日期函数:sysdate()

3、ODS与EDW的关系

EDW主要为企业提供分析决策服务。时效:T+1

ODS主要实现企业数据整合、共享和准实时运营监控等功能。时效:实时

ODS是EDW的一个有益的补充和扩展。

生产系统中的运营数据通过ETL(抽取、转换、装载)过程进人到ODS中,生产系统之间准实时的数据交换由ODS系统完成,ODS系统同时还将整合好的生产系统下的运营数据通过ETL等方式传送到EDW中,完成运营数据从操作环境进人到分析环境的过程。

ODS作用:

   1)对运营数据进行清理整合,提高运营数据质量,是EDW的一个主要数据来源。

   2)实现跨系统的近实时报表和查询统计应用。ODS从不同的运营应用系统中采集数据,整合各个系统的共享交易数据,形成企业级数据的整体视图。

   3)作为其他生产系统的数据同步源。

技术分享

4、Hive分区(partition)简介

    1)在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作。有时候只需要扫描表中关心的一部分数据,因此建表时引入了partition概念。

    2)分区表指的是在创建表时指定的partition的分区空间。

    3)如果需要创建有分区的表,需要在create表的时候调用可选参数partitioned by,详见表创建的语法结构。

    4)一个表可以拥有一个或者多个分区,每个分区以文件夹的形式单独存在表文件夹的目录下。

5、Map-side Join和Reduce-side Join的使用场景

    1)Map-side Join使用场景是一个大表和一个小表的连接操作,其中,“小表”是指文件足够小,可以加载到内存中。该算法可以将join算子执行在Map端,无需经历shuffle和reduce等阶段,因此效率非常高。

    2)Reduce-side Join当两个文件/目录中的数据非常大,难以将某一个存放到内存中时,Reduce-side Join是一种解决思路。该算法需要通过Map和Reduce两个阶段完成,在Map阶段,将key相同的记录划分给同一个Reduce Task(需标记每条记录的来源,便于在Reduce阶段合并),在Reduce阶段,对key相同的进行合并。

6、cast 类型转化

   select cast(20 ad double) from hive;

7、Hive建表:一个表可以拥有一个或多个分区,每个分区以文件夹的形式单独存在表文件夹的目录下。

8、Hive的优化思想:

    1)尽早尽量过滤数据,减少每个阶段的数据量

    2)减少job数

    3)解决数据倾斜问题

9、列裁剪:HQL优化方式及使用技巧:只选择真实需要的列。

     分区裁剪:HQL优化方式及使用技巧:减少不必要的分区。

10、利用hive 的优化机制减少JOB数:

HQL优化方式及使用技巧:不论是外关联outer join还是内关联inner join,如果Join的key相同,不管有多少个表,都会合并为一个MapReduce任务。

SELECT a.val, b.val, c.valFROM a JOIN b ON (a.key= b.key1) JOIN c ON (c.key= b.key1 ) -> 1个JOB

SELECT a.val, b.val, c.valFROM a JOIN b ON (a.key= b.key1) JOIN c ON (c.key= b.key2) -> 2个JOB

11、JOB输入输出优化:

HQL优化方式及使用技巧:善用muti-insert、union all,不同表的union all相当于multiple inputs,同一个表的union all,相当map一次输出多条。

insert overwrite table tmp1
    select ... from a where 条件1;
insert overwrite table tmp2
    select ... from a where 条件2;
from a
    insert overwrite table tmp1
        select ... where 条件1
    insert overwrite table tmp2
        select ... where 条件2;

12、Local Model:

Select user,itemfrom order_tablelimit 10;
Select * from order_tablelimit 10; (不会生成mapreduce程序)

13、HQL优化方式及使用技巧:避免笛卡尔积

14、数据过滤:HQL优化方式及使用技巧:在JOIN前过滤掉不需要的数据

15、小表放前大表放后原则:

      HQL优化方式及使用技巧:在编写带有join操作的代码语句时,应该将条目少的表/子查询放在Join操作符的左边。因为在Reduce 阶段,位于Join 操作符左边的表的内容会被加载进内存,载入条目较少的表可以有效减少OOM(out of memory)即内存溢出。所以对于同一个key来说,对应的value值小的放前,大的放后。

16、Mapjoin():

      HQL优化方式及使用技巧:当小表与大表JOIN时,采用mapjoin,即在map端完成。同时也可以避免小表与大表JOIN 产生的数据倾斜。

17、LEFT SEMI JOIN :

      HQL优化方式及使用技巧:LEFT SEMI JOIN 是IN/EXISTS 子查询的一种更高效的实现,0.13版本以前不支持IN/EXISTS。

18、LEFT SEMI JOIN :

      HQL优化方式及使用技巧

      限制条件:只能在ON 子句中设置过滤条件,在WHERE子句、SELECT 子句或其他地方过滤都不行。

      Left semi join 与JOIN 的区别:B表有重复值的情况下left semi join 产生一条,join 会产生多条。

19、输入输出优化:合理使用动态分区

20、输入输出优化:union all 优化

      HQL优化方式及使用技巧:利用hive对UNION ALL的优化的特性(0.13版本可以直接union)hive对union all优化只局限于非嵌套查询。

21、输入输出优化:合理使用union all

HQL优化方式及使用技巧:不同表太多的union ALL,不推荐使用;通常采用建临时分区表,将不同表的结果insert到不同的分区(可并行),最后再统一处理。

22、输入输出优化:合理使用UDTF

      HQL优化方式及使用技巧:select col1,col2,newCol from myTableLATERAL VIEW explode(myCol) adTableAS newCol

      说明:执行过程相当于单独执行了两次读取,然后union到一个表里,但JOB数只有一个。

      同样myCol也需要为数组类型,但日常中我们多数情况下是string 类型经过split 函数拆分后获取数组类型。

23、输入输出优化:多粒度计算优化

HQL优化方式及使用技巧:应用UDTF 优化:按不同维度进行订单汇总。

select * from (
    select1,province,sum(sales) from order_tablegroup by province
    union all
    select ‘2,city,sum(sales) from order_tablegroup by city
    Union all
    select3,county,sum(sales) from order_tablegroup by county
) df

24、数据去重与排序:DISTINCT 与GROUP BY

      HQL优化方式及使用技巧:尽量避免使用DISTINCT 进行排重,特别是大表操作,用GROUP BY 代替。

25、数据去重与排序:排序优化

    HQL优化方式及使用技巧:只有order by 产生的结果是全局有序的,可以根据实际场景进行选择排序。

    1)Order by 实现全局排序,一个reduce实现,由于不能并发执行,所以效率偏低。

    2)Sort by 实现部分有序,单个reduce输出的结果是有序的,效率高,通常和DISTRIBUTE BY关键字一起使用(DISTRIBUTE BY关键字可以指定map 到reduce端的分发key)

    3)CLUSTER BY col1 等价于DISTRIBUTE BY col1 SORT BY col1 但不能指定排序规则。

26、数据倾斜:

      HQL优化方式及使用技巧:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。最长时长远大于平均时长。

27、Hive有用的新特性:

1)指定列之间的分隔符可以用下面的命令实现:

hive> insert overwrite local directory /home/dd_edw/documents/result
hive> row format delimited
hive> fields terminated by \t
hive> select * from test;

2)group by 语法增强,group by除了可以跟column alias,也可以跟column position

比如:

select f1(col1), f2(col2), f3(col3), count(1) group by f1(col1), f2(col2), f3(col3);

可以写成

select f1(col1), f2(col2), f3(col3), count(1) group by 1, 2, 3;

3)ALTER VIEW view_nameAS select_statement

4)SHOW CREATE TABLE ([db_name.]table_name|view_name)

5)Explain dependency 语法, 获取input table和input partition

6)实现了TRUNCATE,可以删除HDFS上面相关表格存储的数据,但是

会保持表和metadata的完整性。

28、Hive建库使用RCFile格式,反正就是高效,Facebook再用。

29、基于java的框架:数据库mysql mongodb redis,持久层ibatis,框架springMVC+spring/Autofac,

    表现层JDF JQ velocity。

30、Hive动态分区设置:set hive.exec.dynamic.partition.mode=nonstrict;

31、python分析常用的模块:numpy, pandas, matplotlib, scipy

32、mapjoin解决数据倾斜

使用场景:语句中B表有30亿行记录,A表只有100行记录,而且B表中数据倾斜特别严重,有一个key上有15亿行记录,在运行过程中特别的慢,而且在reduece的过程中遇有内存不够而报错。

SELECT /*+ MAPJOIN(b) */ a.key,  a.value  FROM a join b on a.key = b.key

33、LEFT SEMI JOIN 是IN/EXISTS 子查询的一种更高效的实现

    1)通过left outer join 实现in 查询

select a.key, a.value from a left outer join b on a.key=b.keywhere b.keyis not null

    2)通过left semi join 实现in

SELECT a.key, a.value FROM a LEFT SEMI JOIN b on (a.key= b.key)

    注:限制条件只能在ON 子句中设置过滤条件,在WHERE子句、SELECT 子句或其他地方过滤都不行。

    Left semi join 与JOIN 的区别:B表有重复值的情况下left semi join 产生一条,join 会产生多条。

34、hive explode函数

    ——行转列

35、Hive表还有一个TBLPROPERTIES用来给表添加一些描述信息,比如最后一次修改信息,最后一个修改人。

    如:TBLPROPERTIES (‘creator‘=‘zhoumei‘, ‘created_at‘=‘2012-01-02 10:00:00‘)

Hive学习笔记:基础语法

标签:

原文地址:http://www.cnblogs.com/hunttown/p/5452464.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!