标签:caffe deep learning 机器学习 源码分析 神经网络
caffe源码分析--poolinger_layer.cpp
对于采样层,cafffe里实现了最大采样和平均采样的算法。
最大采样,给定一个扫描窗口,找最大值,
平均采样,扫描窗口内所有值的平均值。
其实对于caffe的实现一直有个疑问,
就是每一层貌似没有绑定一个激活函数?
看ufldl教程,感觉激活函数是必要存在的。
这怎么解释呢?
看到源码中,看到一些激活函数,比如sigmoid_layer.cpp和sigmoid_layer.cu。
也就是说,激活函数作为layer层面来实现了。当然,还有tanh_layer和relu_layer。
那,这个意思是说,让我们建立网络的时候更加随意,可自由搭配激活函数吗?
但是,我看了caffe自带的那些例子,貌似很少见到用了激活函数layer的,顶多看到用了relu_layer,其他的没见过。
这意思是说,激活函数不重要吗?真是费解啊。
// Copyright 2013 Yangqing Jia #include <algorithm> #include <cfloat> #include <vector> #include "caffe/layer.hpp" #include "caffe/vision_layers.hpp" #include "caffe/util/math_functions.hpp" using std::max; using std::min; namespace caffe { template <typename Dtype> void PoolingLayer<Dtype>::SetUp(const vector<Blob<Dtype>*>& bottom, vector<Blob<Dtype>*>* top) { CHECK_EQ(bottom.size(), 1) << "PoolingLayer takes a single blob as input."; CHECK_EQ(top->size(), 1) << "PoolingLayer takes a single blob as output."; KSIZE_ = this->layer_param_.kernelsize();//核大小 STRIDE_ = this->layer_param_.stride();//步长 CHANNELS_ = bottom[0]->channels();//通道 HEIGHT_ = bottom[0]->height();//高 WIDTH_ = bottom[0]->width();//宽 POOLED_HEIGHT_ = static_cast<int>( ceil(static_cast<float>(HEIGHT_ - KSIZE_) / STRIDE_)) + 1;//计算采样之后的高 POOLED_WIDTH_ = static_cast<int>( ceil(static_cast<float>(WIDTH_ - KSIZE_) / STRIDE_)) + 1;//计算采样之后的宽 (*top)[0]->Reshape(bottom[0]->num(), CHANNELS_, POOLED_HEIGHT_,//采样之后大小 POOLED_WIDTH_); // If stochastic pooling, we will initialize the random index part. if (this->layer_param_.pool() == LayerParameter_PoolMethod_STOCHASTIC) { rand_idx_.Reshape(bottom[0]->num(), CHANNELS_, POOLED_HEIGHT_, POOLED_WIDTH_); } } // TODO(Yangqing): Is there a faster way to do pooling in the channel-first // case? template <typename Dtype> void PoolingLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, vector<Blob<Dtype>*>* top) { const Dtype* bottom_data = bottom[0]->cpu_data();//采样层输入 Dtype* top_data = (*top)[0]->mutable_cpu_data();//采样层输出 // Different pooling methods. We explicitly do the switch outside the for // loop to save time, although this results in more codes. int top_count = (*top)[0]->count(); switch (this->layer_param_.pool()) { case LayerParameter_PoolMethod_MAX://最大采样方法 // Initialize for (int i = 0; i < top_count; ++i) { top_data[i] = -FLT_MAX; } // The main loop for (int n = 0; n < bottom[0]->num(); ++n) { for (int c = 0; c < CHANNELS_; ++c) { for (int ph = 0; ph < POOLED_HEIGHT_; ++ph) { for (int pw = 0; pw < POOLED_WIDTH_; ++pw) { int hstart = ph * STRIDE_; int wstart = pw * STRIDE_; int hend = min(hstart + KSIZE_, HEIGHT_); int wend = min(wstart + KSIZE_, WIDTH_); for (int h = hstart; h < hend; ++h) {//找出核范围内最大 for (int w = wstart; w < wend; ++w) { top_data[ph * POOLED_WIDTH_ + pw] = max(top_data[ph * POOLED_WIDTH_ + pw], bottom_data[h * WIDTH_ + w]); } } } } // compute offset 指针移动到下一个channel。注意代码这里的位置。采样是针对每个channel的。 bottom_data += bottom[0]->offset(0, 1); top_data += (*top)[0]->offset(0, 1); } } break; case LayerParameter_PoolMethod_AVE: for (int i = 0; i < top_count; ++i) { top_data[i] = 0; } // The main loop for (int n = 0; n < bottom[0]->num(); ++n) { for (int c = 0; c < CHANNELS_; ++c) { for (int ph = 0; ph < POOLED_HEIGHT_; ++ph) { for (int pw = 0; pw < POOLED_WIDTH_; ++pw) { int hstart = ph * STRIDE_; int wstart = pw * STRIDE_; int hend = min(hstart + KSIZE_, HEIGHT_); int wend = min(wstart + KSIZE_, WIDTH_); for (int h = hstart; h < hend; ++h) {//核范围内算平均 for (int w = wstart; w < wend; ++w) { top_data[ph * POOLED_WIDTH_ + pw] += bottom_data[h * WIDTH_ + w]; } } top_data[ph * POOLED_WIDTH_ + pw] /= (hend - hstart) * (wend - wstart); } } // compute offset bottom_data += bottom[0]->offset(0, 1); top_data += (*top)[0]->offset(0, 1); } } break; case LayerParameter_PoolMethod_STOCHASTIC://这种算法这里未实现 NOT_IMPLEMENTED; break; default: LOG(FATAL) << "Unknown pooling method."; } } template <typename Dtype> Dtype PoolingLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, const bool propagate_down, vector<Blob<Dtype>*>* bottom) { if (!propagate_down) { return Dtype(0.); } const Dtype* top_diff = top[0]->cpu_diff(); const Dtype* top_data = top[0]->cpu_data(); const Dtype* bottom_data = (*bottom)[0]->cpu_data(); Dtype* bottom_diff = (*bottom)[0]->mutable_cpu_diff(); // Different pooling methods. We explicitly do the switch outside the for // loop to save time, although this results in more codes. memset(bottom_diff, 0, (*bottom)[0]->count() * sizeof(Dtype)); switch (this->layer_param_.pool()) { case LayerParameter_PoolMethod_MAX: // The main loop for (int n = 0; n < top[0]->num(); ++n) { for (int c = 0; c < CHANNELS_; ++c) { for (int ph = 0; ph < POOLED_HEIGHT_; ++ph) { for (int pw = 0; pw < POOLED_WIDTH_; ++pw) { int hstart = ph * STRIDE_; int wstart = pw * STRIDE_; int hend = min(hstart + KSIZE_, HEIGHT_); int wend = min(wstart + KSIZE_, WIDTH_); for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { bottom_diff[h * WIDTH_ + w] +=//采样层输出的残传播给输入。由于是最大采样方法,输出存的都是输入范围内最大的值,所以残差传播的时候也只有范围内最大的值受影响 top_diff[ph * POOLED_WIDTH_ + pw] * (bottom_data[h * WIDTH_ + w] == top_data[ph * POOLED_WIDTH_ + pw]); } } } } // offset 移动到下一个channel bottom_data += (*bottom)[0]->offset(0, 1); top_data += top[0]->offset(0, 1); bottom_diff += (*bottom)[0]->offset(0, 1); top_diff += top[0]->offset(0, 1); } } break; case LayerParameter_PoolMethod_AVE: // The main loop for (int n = 0; n < top[0]->num(); ++n) { for (int c = 0; c < CHANNELS_; ++c) { for (int ph = 0; ph < POOLED_HEIGHT_; ++ph) { for (int pw = 0; pw < POOLED_WIDTH_; ++pw) { int hstart = ph * STRIDE_; int wstart = pw * STRIDE_; int hend = min(hstart + KSIZE_, HEIGHT_); int wend = min(wstart + KSIZE_, WIDTH_); int poolsize = (hend - hstart) * (wend - wstart); for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { bottom_diff[h * WIDTH_ + w] +=//采样层输出的残差传播给输入,由于是平均采样,所以权重都是1 / poolsize。 top_diff[ph * POOLED_WIDTH_ + pw] / poolsize; } } } } // offset bottom_data += (*bottom)[0]->offset(0, 1); top_data += top[0]->offset(0, 1); bottom_diff += (*bottom)[0]->offset(0, 1); top_diff += top[0]->offset(0, 1); } } break; case LayerParameter_PoolMethod_STOCHASTIC: NOT_IMPLEMENTED; break; default: LOG(FATAL) << "Unknown pooling method."; } return Dtype(0.); } INSTANTIATE_CLASS(PoolingLayer); } // namespace caffe
caffe源码分析--poolinger_layer.cpp,布布扣,bubuko.com
caffe源码分析--poolinger_layer.cpp
标签:caffe deep learning 机器学习 源码分析 神经网络
原文地址:http://blog.csdn.net/lingerlanlan/article/details/38294169