标签:
price = torch.Tensor{28993, 29110, 29436, 30791, 33384, 36762, 39900, 39972, 40230, 40146}
这是自己定义Tensor的值输入10个整型值,打印price,注意这时它只是一个有10数据的Tensor。
对比这两张图片,第一张是有10个数据的Tensor,第二张是10x1的矩阵,也可以成为列向量(神经网络经常用到),是调用了reshape()方法转换的,它们看着一样本质上是不一样的!
这时再次调用reshape()方法生产的2x5矩阵,值得注意的是,现在虽然调用了两次reshape(),但是原来的price还是10个数据的Tensor,如下图22行,在经过2次reshape()运算后price没有变化。
可以使用赋值语句将10x1的向量保存到price_vec中,当然也可以一直用price:reshape(10,1)来表示10x1向量,就是代码长一些。
如果想输出1到10这样的类似于枚举型数据时,可以调用range()方法,再次提醒这样初始化的还是一个Tensor,而非运算时候的矩阵或者向量,要用reshape转换。
标签:
原文地址:http://blog.csdn.net/u010946556/article/details/51329561