标签:
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
3 2 1 2 -3 1 2 1 1 2 0 2 0 0
Case 1: 2 Case 2: 1
/*
题意:给定点集S={(xi,yi)i=1.2.3...n},求用圆心在x轴上,半径为r的圆覆盖S所需的圆的最少个数。
解题思路:先把给定的xi,yi,r转化为x轴上的区间,即圆心所在的区间,这样就转化为了区间选点问题。
先对右端点从小到大排序,右端点相同时,左端点从小到大排序。
每一个点以r为半径,在x轴上的投影的区间段。即是该区间段上任一点部署雷达,都可以覆盖岛屿。
*/
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
struct radar{
double a,b;
}r[1005];
bool comp(radar a1,radar a2)
{
if(a1.b!=a2.b)//对右端点从小到大排序
return a1.b<a2.b;
return a1.a<a2.a;//右端点相同,左端点从小到大排序
}
int main()
{
int n,d,i,cas=0;
while(scanf("%d%d",&n,&d),n,d)
{
double x,y;
int flag=0,m=0;
for(i=0;i<n;++i)
{
scanf("%lf%lf",&x,&y);
if(fabs(y)>d)
{
flag=1;//高度大于半径,有覆盖不到的点
continue;
}
double diff=sqrt(d*d-y*y);
r[m].a=x-diff;
r[m++].b=x+diff;
}
printf("Case %d: ",++cas);
if(flag)
{
printf("-1\n");
continue;
}
sort(r,r+m,comp);
int cnt=1,p=0;
for(i=1;i<m;++i)
{
if(r[p].b>=r[i].a)
{
continue;
//区间重叠,不换 雷达
}
else{
cnt++;
p=i;
}
}
printf("%d\n",cnt);
}
return 0;
}
标签:
原文地址:http://blog.csdn.net/gz153016/article/details/51328907