标签:
TensorFlow是一个非常强大的用来做大规模数值计算的库。其所擅长的任务之一就是实现以及训练深度神经网络。
在本教程中,我们将学到构建一个TensorFlow模型的基本步骤,并将通过这些步骤为MNIST构建一个深度卷积神经网络。
这个教程假设你已经熟悉神经网络和MNIST数据集。如果你尚未了解,请查看新手指南.
安装
在创建模型之前,我们会先加载MNIST数据集,然后启动一个TensorFlow的session。
加载MNIST数据
为了方便起见,我们已经准备了一个脚本来自动下载和导入MNIST数据集。它会自动创建一个‘MNIST_data‘的目录来存储数据。
<span style="font-size:14px;">import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True)</span>
这里,mnist是一个轻量级的类。它以Numpy数组的形式存储着训练、校验和测试数据集。同时提供了一个函数,用于在迭代中获得minibatch,后面我们将会用到。
运行TensorFlow的InteractiveSession
Tensorflow依赖于一个高效的C++后端来进行计算。与后端的这个连接叫做session。一般而言,使用TensorFlow程序的流程是先创建一个图,然后在session中启动它。
这里,我们使用更加方便的InteractiveSession类。通过它,你可以更加灵活地构建你的代码。它能让你在运行图的时候,插入一些计算图,这些计算图是由某些操作(operations)构成的。这对于工作在交互式环境中的人们来说非常便利,比如使用IPython。如果你没有使用InteractiveSession,那么你需要在启动session之前构建整个计算图,然后启动该计算图。
<span style="font-size:14px;">import tensorflow as tf sess = tf.InteractiveSession()</span>
为了在Python中进行高效的数值计算,我们通常会使用像NumPy一类的库,将一些诸如矩阵乘法的耗时操作在Python环境的外部来计算,这些计算通常会通过其它语言并用更为高效的代码来实现。
但遗憾的是,每一个操作切换回Python环境时仍需要不小的开销。如果你想在GPU或者分布式环境中计算时,这一开销更加可怖,这一开销主要可能是用来进行数据迁移。
TensorFlow也是在Python外部完成其主要工作,但是进行了改进以避免这种开销。其并没有采用在Python外部独立运行某个耗时操作的方式,而是先让我们描述一个交互操作图,然后完全将其运行在Python外部。这与Theano或Torch的做法类似。
因此Python代码的目的是用来构建这个可以在外部运行的计算图,以及安排计算图的哪一部分应该被运行。详情请查看基本用法中的计算图表一节。
构建Softmax 回归模型
在这一节中我们将建立一个拥有一个线性层的softmax回归模型。在下一节,我们会将其扩展为一个拥有多层卷积网络的softmax回归模型。
占位符
我们通过为输入图像和目标输出类别创建节点,来开始构建计算图。
<span style="font-size:14px;">x = tf.placeholder("float", shape=[None, 784]) y_ = tf.placeholder("float", shape=[None, 10])</span>
这里的x和y并不是特定的值,相反,他们都只是一个占位符,可以在TensorFlow运行某一计算时根据该占位符输入具体的值。
输入图片x是一个2维的浮点数张量。这里,分配给它的shape为[None, 784],其中784是一张展平的MNIST图片的维度。None表示其值大小不定,在这里作为第一个维度值,用以指代batch的大小,意即x的数量不定。输出类别值y_也是一个2维张量,其中每一行为一个10维的one-hot向量,用于代表对应某一MNIST图片的类别。
虽然placeholder的shape参数是可选的,但有了它,TensorFlow能够自动捕捉因数据维度不一致导致的错误。
变量
<span style="font-size:14px;">W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10]))</span>
我们在调用tf.Variable的时候传入初始值。在这个例子里,我们把W和b都初始化为零向量。W是一个784x10的矩阵(因为我们有784个特征和10个输出值)。b是一个10维的向量(因为我们有10个分类)。
变量需要通过seesion初始化后,才能在session中使用。这一初始化步骤为,为初始值指定具体值(本例当中是全为零),并将其分配给每个变量,可以一次性为所有变量完成此操作。
<span style="font-size:14px;">sess.run(tf.initialize_all_variables())</span>
类别预测与损失函数
<span style="font-size:14px;">y = tf.nn.softmax(tf.matmul(x,W) + b)</span>可以很容易的为训练过程指定最小化误差用的损失函数,我们的损失函数是目标类别和预测类别之间的交叉熵。
<span style="font-size:14px;">cross_entropy = -tf.reduce_sum(y_*tf.log(y))</span>注意,tf.reduce_sum把minibatch里的每张图片的交叉熵值都加起来了。我们计算的交叉熵是指整个minibatch的。
我们已经定义好模型和训练用的损失函数,那么用TensorFlow进行训练就很简单了。因为TensorFlow知道整个计算图,它可以使用自动微分法找到对于各个变量的损失的梯度值。TensorFlow有大量内置的优化算法 这个例子中,我们用最速下降法让交叉熵下降,步长为0.01.
<span style="font-size:14px;">train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)</span>
这一行代码实际上是用来往计算图上添加一个新操作,其中包括计算梯度,计算每个参数的步长变化,并且计算出新的参数值。
返回的train_step操作对象,在运行时会使用梯度下降来更新参数。因此,整个模型的训练可以通过反复地运行train_step来完成。
<span style="font-size:14px;">for i in range(1000): batch = mnist.train.next_batch(50) train_step.run(feed_dict={x: batch[0], y_: batch[1]}) </span>每一步迭代,我们都会加载50个训练样本,然后执行一次train_step,并通过feed_dict将x 和 y_张量占位符用训练训练数据替代。
注意,在计算图中,你可以用feed_dict来替代任何张量,并不仅限于替换占位符。
评估模型
那么我们的模型性能如何呢?
首先让我们找出那些预测正确的标签。tf.argmax 是一个非常有用的函数,它能给出某个tensor对象在某一维上的其数据最大值所在的索引值。由于标签向量是由0,1组成,因此最大值1所在的索引位置就是类别标签,比如tf.argmax(y,1)返回的是模型对于任一输入x预测到的标签值,而 tf.argmax(y_,1) 代表正确的标签,我们可以用 tf.equal 来检测我们的预测是否真实标签匹配(索引位置一样表示匹配)。
<span style="font-size:14px;">correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))</span>这里返回一个布尔数组。为了计算我们分类的准确率,我们将布尔值转换为浮点数来代表对、错,然后取平均值。例如:[True, False, True, True]变为[1,0,1,1],计算出平均值为0.75。
<span style="font-size:14px;">accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))</span>最后,我们可以计算出在测试数据上的准确率,大概是91%。
<span style="font-size:14px;">print accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})</span>
构建一个多层卷积网络
在MNIST上只有91%正确率,实在太糟糕。在这个小节里,我们用一个稍微复杂的模型:卷积神经网络来改善效果。这会达到大概99.2%的准确率。虽然不是最高,但是还是比较让人满意。
<span style="font-size:14px;">def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial)</span>
卷积和池化
<span style="font-size:14px;">def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') </span>
<span style="font-size:14px;">W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32])</span>为了用这一层,我们把x变成一个4d向量,其第2、第3维对应图片的宽、高,最后一维代表图片的颜色通道数(因为是灰度图所以这里的通道数为1,如果是rgb彩色图,则为3)。
<span style="font-size:14px;">x_image = tf.reshape(x, [-1,28,28,1])</span>We then convolve x_image with the weight tensor, add the bias, apply the ReLU function, and finally max pool. 我们把x_image和权值向量进行卷积,加上偏置项,然后应用ReLU激活函数,最后进行max pooling。
<span style="font-size:14px;">h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1)</span>
<span style="font-size:14px;">W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) </span>
<span style="font-size:14px;">W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) </span>
Dropout
<span style="font-size:14px;">keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)</span>
<span style="font-size:14px;">W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)</span>
<span style="font-size:14px;">cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess.run(tf.initialize_all_variables()) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={ x:batch[0], y_: batch[1], keep_prob: 1.0}) print "step %d, training accuracy %g"%(i, train_accuracy) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print "test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}) </span>
标签:
原文地址:http://blog.csdn.net/wang_junjie/article/details/51326926