标签:des style blog http os io for 2014
Description
Input
Sample Input
0 1 2 3 4 5 35 36 37 38 39 40 64 65
Sample Output
0 1 1 2 3 5 9227465 14930352 24157817 39088169 63245986 1023...4155 1061...7723 1716...7565
题意:求第n个斐波那契数的前4个和后4个
思路:对于前四个我们可以采用科学计数发的方式得到,
斐波那契数的通项公式是:f(n)=1/sqrt(5)(((1+sqrt(5))/2)^n+((1-sqrt(5))/2)^n),对于40个后((1-sqrt(5))/2)^n可以忽略不计了,
后4个我们采用矩阵快速幂的方法获得,构造的矩阵是:
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; const int maxn = 10; const int mod = 10000; int cnt; struct Matrix { ll v[maxn][maxn]; Matrix() {} Matrix(int x) { init(); for (int i = 0; i < maxn; i++) v[i][i] = x; } void init() { memset(v, 0, sizeof(v)); } Matrix operator *(Matrix const &b) const { Matrix c; c.init(); for (int i = 0; i < cnt; i++) for (int j = 0; j < cnt; j++) for (int k = 0; k < cnt; k++) c.v[i][j] = (c.v[i][j] + (ll)v[i][k]*b.v[k][j]) % mod; return c; } Matrix operator ^(int b) { Matrix a = *this, res(1); while (b) { if (b & 1) res = res * a; a = a * a; b >>= 1; } return res; } } a, b, tmp; int main() { int f[40], n; f[0] = 0, f[1] = 1; for (int i = 2; i < 40; i++) f[i] = f[i-1] + f[i-2]; while (scanf("%d", &n) != EOF) { if (n < 40) { printf("%d\n", f[n]); continue; } double k = log10(1.0/sqrt(5.0)) + (double)n * log10((1.0 + sqrt(5.0))/2.0); double num = k; num = k - (int)num; a.init(); a.v[0][0] = a.v[0][1] = a.v[1][0] = 1; cnt = 2; tmp = a^n; printf("%d...%0.4d\n", (int)(1000.0*pow(10.0, num)), tmp.v[0][1]%mod); } }
HDU - 3117 Fibonacci Numbers,布布扣,bubuko.com
标签:des style blog http os io for 2014
原文地址:http://blog.csdn.net/u011345136/article/details/38306961