码迷,mamicode.com
首页 > 其他好文 > 详细

并查集

时间:2016-05-06 19:09:48      阅读:164      评论:0      收藏:0      [点我收藏+]

标签:

并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题。一些常见的用途有求连通子图、求最小生成树的 Kruskal 算法和求最近公共祖先(Least Common Ancestors, LCA)等。

 

使用并查集时,首先会存在一组不相交的动态集合 S={S1,S2,?,Sk}S={S1,S2,?,Sk},一般都会使用一个整数表示集合中的一个元素。

每个集合可能包含一个或多个元素,并选出集合中的某个元素作为代表。每个集合中具体包含了哪些元素是不关心的,具体选择哪个元素作为代表一般也是不关心的。我们关心的是,对于给定的元素,可以很快的找到这个元素所在的集合(的代表),以及合并两个元素所在的集合,而且这些操作的时间复杂度都是常数级的。

并查集的基本操作有三个:

  1. makeSet(s):建立一个新的并查集,其中包含 s 个单元素集合。
  2. unionSet(x, y):把元素 x 和元素 y 所在的集合合并,要求 x 和 y 所在的集合不相交,如果相交则不合并。
  3. find(x):找到元素 x 所在的集合的代表,该操作也可以用于判断两个元素是否位于同一个集合,只要将它们各自的代表比较一下就可以了。

并查集的实现原理也比较简单,就是使用树来表示集合,树的每个节点就表示集合中的一个元素,树根对应的元素就是该集合的代表,如图 1 所示。

技术分享

树的节点表示集合中的元素,指针表示指向父节点的指针,根节点的指针指向自己,表示其没有父节点。沿着每个节点的父节点不断向上查找,最终就可以找到该树的根节点,即该集合的代表元素。

现在,应该可以很容易的写出 makeSet 和 find 的代码了,假设使用一个足够长的数组来存储树节点(很类似之前讲到的静态链表),那么 makeSet 要做的就是构造出如图 2 的森林,其中每个元素都是一个单元素集合,即父节点是其自身:

技术分享

相应的代码如下所示,时间复杂度是 O(n)

1 const int MAXSIZE = 500;
2 int uset[MAXSIZE];
3  
4 void makeSet(int size) {
5     for(int i = 0;i < size;i++) uset[i] = i;
6 }

接下来,就是 find 操作了,如果每次都沿着父节点向上查找,那时间复杂度就是树的高度,完全不可能达到常数级。这里需要应用一种非常简单而有效的策略——路径压缩。

路径压缩,就是在每次查找时,令查找路径上的每个节点都直接指向根节点,如图 3 所示。

技术分享

我准备了两个版本的 find 操作实现,分别是递归版和非递归版,不过两个版本目前并没有发现有什么明显的效率差距,所以具体使用哪个完全凭个人喜好了。

 1 int find(int x) {
 2     if (x != uset[x]) uset[x] = find(uset[x]);
 3     return uset[x];
 4 }
 5 int find(int x) {
 6     int p = x, t;
 7     while (uset[p] != p) p = uset[p];
 8     while (x != p) { t = uset[x]; uset[x] = p; x = t; }
 9     return x;
10 }

最后是合并操作 unionSet,并查集的合并也非常简单,就是将一个集合的树根指向另一个集合的树根,如图 4 所示。

技术分享

1 void unionSet(int x, int y)
2 {
3     int a=find(x),b=find(y);
4     if(a!=b)
5         uset[a]=uset[b];
6 }

 http://blog.csdn.net/dellaserss/article/details/7724401 精辟

并查集

标签:

原文地址:http://www.cnblogs.com/WDKER/p/5466583.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!