码迷,mamicode.com
首页 > 其他好文 > 详细

51nod1020 逆序排列(dp)

时间:2016-05-07 06:55:02      阅读:200      评论:0      收藏:0      [点我收藏+]

标签:

1020 逆序排列技术分享
基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
技术分享 收藏
技术分享 关注
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。
如2 4 3 1中,2 1,4 3,4 1,3 1是逆序,逆序数是4。

1-n的全排列中,逆序数最小为0(正序),最大为n*(n-1) / 2(倒序)
给出2个数n和k,求1-n的全排列中,逆序数为k的排列有多少种?
例如:n = 4 k = 3。

1 2 3 4的排列中逆序为3的共有6个,分别是:
1 4 3 2
2 3 4 1
2 4 1 3
3 1 4 2
3 2 1 4
4 1 2 3

由于逆序排列的数量非常大,因此只需计算并输出该数 Mod 10^9 + 7的结果就可以了。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行2个数n,k。中间用空格分隔。(2 <= n <= 1000, 0 <= k <= 20000)
Output
共T行,对应逆序排列的数量 Mod (10^9 + 7)
Input示例
1
4 3
Output示例
6


设f(n,k)表示n个数的排列中逆序数个数为k的排列数。

最大的数n可能会排在第n-i位,从而产生i个与n有关的逆序对,去掉n之后,剩下的n-1个数的排列有k-i个逆序对。所以,f(n,k)=求和(f(n-1,k-i))(0<=i<n)。
同理有f(n,k-1)=求和(f(n-1,k-1-i))(0<=i<n)。
两式相减,可得f(n,k)-f(n,k-1)=f(n-1,k)-f(n-1,k-n)。
递推公式为f(n,k)=f(n,k-1)+f(n-1,k)-f(n-1,k-n)。



#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <functional>
#include <cmath>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <stack>
using namespace std;
#define esp  1e-8
const double PI = acos(-1.0);
const double e = 2.718281828459;
const int inf = 2147483647;
const long long mod = 1000000007;
typedef long long ll;
//freopen("in.txt","r",stdin); //输入重定向,输入数据将从in.txt文件中读取
//freopen("out.txt","w",stdout); //输出重定向,输出数据将保存在out.txt文件中
int dp[1005][20005];
void init()
{
	for (int i = 1; i <= 1000; ++i)
		dp[i][0] = 1;
	for (int i = 2; i <= 1000; ++i)
	{
		for (int j = 1; j <= i * (i - 1) / 2 && j <= 20000; ++j)
		{
			dp[i][j] = (dp[i][j - 1] + dp[i - 1][j]) % mod;
			if (j - i >= 0)
				dp[i][j] -= dp[i - 1][j - i];
			dp[i][j] = (dp[i][j] % mod + mod) % mod;
		}
	}
}
int main()
{
	int t, n, k;
	init();
	scanf("%d", &t);
	while (t--)
	{
		scanf("%d%d", &n, &k);
		printf("%d\n", dp[n][k]);
	}
	
}



51nod1020 逆序排列(dp)

标签:

原文地址:http://blog.csdn.net/zjw6463/article/details/51335710

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!