标签:
Problem: cf670d2
Analyse:
经典的二分加贪心模型,我太高估了暴力的复杂度了….
先考虑最坏情况,就是只缺一个物品,而且这个物品缺1e9个,这里面明显需要一个
二分答案,然后贪心地去判断,最后要消耗小于k,贪心就满足,注意这里会爆ll,要提前跳出判断函数.
复杂度
二分闭区间的模板化写法:
int l = 0, r = INF;
while (l < r) {
int mid = (l + r + 1) / 2;
if (ok) l = mid;
else r = mid - 1;
}
Code:
/**********************jibancanyang**************************
*Author* :jibancanyang
*Created Time* : 四 5/ 5 23:59:56 2016
*File Name* : jy.cpp
***********************1599664856@qq.com**********************/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <stack>
using namespace std;
typedef pair<int, int> pii;
typedef long long ll;
typedef unsigned long long ull;
vector<int> vi;
#define pr(x) cout << #x << ": " << x << " "
#define pl(x) cout << #x << ": " << x << endl;
#define pri(a) printf("%d\n",(a));
#define xx first
#define yy second
#define sa(n) scanf("%d", &(n))
#define sal(n) scanf("%lld", &(n))
#define sai(n) scanf("%I64d", &(n))
#define rep(i, a, n) for (int i = a; i < n; i++)
#define vep(c) for(decltype((c).begin() ) it = (c).begin(); it != (c).end(); it++)
const int mod = int(1e9) + 7, INF = 0x3fffffff;
const int maxn = 1e5 + 13;
ll A[maxn], B[maxn], n, k;
bool ok(ll t) {
ll ret = 0;
rep (i, 0, n) {
if (B[i] <= A[i] * t) {
ret += A[i] * t - B[i];
if (k < ret) return false;
}
}
return k >= ret;
}
int main(void)
{
#ifdef LOCAL
freopen("/Users/zhaoyang/in.txt", "r", stdin);
//freopen("/Users/zhaoyang/out.txt", "w", stdout);
#endif
//ios_base::sync_with_stdio(false),cin.tie(0),cout.tie(0);
while (cin >> n >> k) {
ll suma = 0, ans = 0 ;
rep (i, 0, n) cin >> A[i], suma += A[i];
rep (i, 0, n) cin >> B[i];
ll mins = INF;
rep (i, 0, n) {
mins = min(mins, B[i] / A[i]);
}
ans += mins;
rep (i, 0, n) {
B[i] -= mins * A[i];
}
ll r = k, l = 0;
while (l < r) {
ll mid = (r + l + 1) / 2;
if (ok(mid)) {
l = mid;
} else r = mid - 1;
}
cout << ans + l << endl;
}
return 0;
}
标签:
原文地址:http://blog.csdn.net/jibancanyang/article/details/51331264