标签:
linux 内存管理基于分段、分页把逻辑地址转换为物理地址,同时有些RAM永久的分配给了内核使用用来存放内核代码以及静态数据。其余的RAM为动态内存。linux中采用了很多有效的管理方法,包括页表管理、高端内存(临时映射区、固定映射区、永久映射区、非连续内存区)管理、为减小外部碎片的伙伴系统、为减小内部碎片的slab机制、伙伴系统未建立之前的页面分配制度以及紧急内存管理等等。。
此图copyfrom http://bbs.chinaunix.net/thread-2018659-2-1.html
页描述符:
页描述符记录页框的当前状态,类型为一个struct page的页描述符;所有的页描述符放在mem_map中,每个描述符场为32bytes,
/* * Each physical page in the system has a struct page associated with * it to keep track of whatever it is we are using the page for at the * moment. Note that we have no way to track which tasks are using * a page, though if it is a pagecache page, rmap structures can tell us * who is mapping it. * * The objects in struct page are organized in double word blocks in * order to allows us to use atomic double word operations on portions * of struct page. That is currently only used by slub but the arrangement * allows the use of atomic double word operations on the flags/mapping * and lru list pointers also. */ struct page { /* First double word block */描述了页框的状态 unsigned long flags; /* Atomic flags, some possibly * updated asynchronously */ struct address_space *mapping; /* If low bit clear, points to * inode address_space, or NULL. * If page mapped as anonymous * memory, low bit is set, and * it points to anon_vma object: * see PAGE_MAPPING_ANON below. */ /* Second double word */ struct { union { pgoff_t index; /* Our offset within mapping. */ void *freelist; /* slub/slob first free object */ bool pfmemalloc; /* If set by the page allocator, * ALLOC_NO_WATERMARKS was set * and the low watermark was not * met implying that the system * is under some pressure. The * caller should try ensure * this page is only used to * free other pages. */ }; union { #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) /* Used for cmpxchg_double in slub */ unsigned long counters; #else /* * Keep _count separate from slub cmpxchg_double data. * As the rest of the double word is protected by * slab_lock but _count is not. */ unsigned counters; #endif struct { union { /* * Count of ptes mapped in * mms, to show when page is * mapped & limit reverse map * searches. * * Used also for tail pages * refcounting instead of * _count. Tail pages cannot * be mapped and keeping the * tail page _count zero at * all times guarantees * get_page_unless_zero() will * never succeed on tail * pages. */ atomic_t _mapcount; struct { /* SLUB */ unsigned inuse:16; unsigned objects:15; unsigned frozen:1; }; int units; /* SLOB */ }; atomic_t _count; /* Usage count, see below. */ }; }; }; /* Third double word block */ union { struct list_head lru; /* Pageout list, eg. active_list * protected by zone->lru_lock ! */ struct { /* slub per cpu partial pages */ struct page *next; /* Next partial slab */ #ifdef CONFIG_64BIT int pages; /* Nr of partial slabs left */ int pobjects; /* Approximate # of objects */ #else short int pages; short int pobjects; #endif }; struct list_head list; /* slobs list of pages */ struct { /* slab fields */ struct kmem_cache *slab_cache; struct slab *slab_page; }; }; /* Remainder is not double word aligned */ union { unsigned long private; /* Mapping-private opaque data: * usually used for buffer_heads * if PagePrivate set; used for * swp_entry_t if PageSwapCache; * indicates order in the buddy * system if PG_buddy is set. */ #if USE_SPLIT_PTLOCKS spinlock_t ptl; #endif struct kmem_cache *slab; /* SLUB: Pointer to slab */ struct page *first_page; /* Compound tail pages */ }; /* * On machines where all RAM is mapped into kernel address space, * we can simply calculate the virtual address. On machines with * highmem some memory is mapped into kernel virtual memory * dynamically, so we need a place to store that address. * Note that this field could be 16 bits on x86 ... ;) * * Architectures with slow multiplication can define * WANT_PAGE_VIRTUAL in asm/page.h */ #if defined(WANT_PAGE_VIRTUAL) void *virtual; /* Kernel virtual address (NULL if not kmapped, ie. highmem) */ #endif /* WANT_PAGE_VIRTUAL */ #ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS unsigned long debug_flags; /* Use atomic bitops on this */ #endif #ifdef CONFIG_KMEMCHECK /* * kmemcheck wants to track the status of each byte in a page; this * is a pointer to such a status block. NULL if not tracked. */ void *shadow; #endif }然而系统将物理内存划分为几个节点node,内存的每个节点都由pg_data_t描述,在分配一个页面时,linux采用节点局部分配的策略,从最靠近运行中的CPU的节点分配内存。由于进程往往是在同一个CPU上运行,因此从当前节点得到的内存很可能被用到。每个节点的物理内存又分为几个管理区zone,
typedef struct pglist_data { struct zone <span style="white-space:pre"> </span>node_zones[MAX_NR_ZONES]; 节点管理区描述数组 struct zonelist node_zonelists[MAX_ZONELISTS]; //页分配器使用的zonelist数据结构;该节点的备用内存区。当节点没有可用内存时,就从备用区中分配内存 int nr_zones; 节点中管理区的个数 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ struct page *node_mem_map<span style="white-space:pre"> </span>节点中页描述符数组 #ifdef CONFIG_MEMCG struct page_cgroup *node_page_cgroup; #endif #endif #ifndef CONFIG_NO_BOOTMEM struct bootmem_data *bdata;<span style="white-space:pre"> </span>用在内核初始化阶段 #endif #ifdef CONFIG_MEMORY_HOTPLUG /* * Must be held any time you expect node_start_pfn, node_present_pages * or node_spanned_pages stay constant. Holding this will also * guarantee that any pfn_valid() stays that way. * * Nests above zone->lock and zone->size_seqlock. */ spinlock_t node_size_lock; #endif unsigned long node_start_pfn;<span style="white-space:pre"> </span>节点中第一个页框的下标 unsigned long node_present_pages; /* total number of physical pages */ unsigned long node_spanned_pages; /* total size of physical page range, including holes */ int node_id;<span style="white-space:pre"> </span>节点标识符 wait_queue_head_t kswapd_wait;<span style="white-space:pre"> </span>kswapd页换出守护进程使用的等待队列 wait_queue_head_t pfmemalloc_wait; struct task_struct *kswapd; 指向kswapd的内核线程/* Protected by lock_memory_hotplug() */ int kswapd_max_order; <span style="white-space:pre"> </span>kswapd线程要创建空闲块取对数的值 enum zone_type classzone_idx; } pg_data_t;所有的节点描述符存放在一个单向链表中,他的第一个元素由pgdat_list变量所指向
管理区描述符字段
struct zone { /* Fields commonly accessed by the page allocator */ /* zone watermarks, access with *_wmark_pages(zone) macros */ /*本管理区的三个水线值:高水线(比较充足)、低水线、MIN水线。*/ unsigned long watermark[NR_WMARK]; /* * When free pages are below this point, additional steps are taken * when reading the number of free pages to avoid per-cpu counter * drift allowing watermarks to be breached */ unsigned long percpu_drift_mark; /* * We don't know if the memory that we're going to allocate will be freeable * or/and it will be released eventually, so to avoid totally wasting several * GB of ram we must reserve some of the lower zone memory (otherwise we risk * to run OOM on the lower zones despite there's tons of freeable ram * on the higher zones). This array is recalculated at runtime if the * sysctl_lowmem_reserve_ratio sysctl changes. */ <span style="white-space:pre"> </span>/ * 当高端内存、normal内存区域中无法分配到内存时,需要从normal、DMA区域中分配内存。 * 为了避免DMA区域被消耗光,需要额外保留一些内存供驱动使用。 * 该字段就是指从上级内存区退到回内存区时,需要额外保留的内存数量。 */ unsigned long lowmem_reserve[MAX_NR_ZONES]; /* * This is a per-zone reserve of pages that should not be * considered dirtyable memory. */ unsigned long dirty_balance_reserve; #ifdef CONFIG_NUMA int node; /*所属的NUMA节点。*/ /* * zone reclaim becomes active if more unmapped pages exist. *//*当可回收的页超过此值时,将进行页面回收。*/ unsigned long min_unmapped_pages; /*当管理区中,用于slab的可回收页大于此值时,将回收slab中的缓存页。*/ unsigned long min_slab_pages; #endif <span style="white-space:pre"> </span>/*每cpu高速缓存所用到, <span style="white-space:pre"> </span> <span style="white-space:pre"> </span> <span style="white-space:pre">* 每CPU的页面缓存。 * 当分配单个页面时,首先从该缓存中分配页面。这样可以: *避免使用全局的锁 * 避免同一个页面反复被不同的CPU分配,引起缓存行的失效。 * 避免将管理区中的大块分割成碎片。 */ </span> struct per_cpu_pageset __percpu *pageset; /* * free areas of different sizes */ spinlock_t lock; int all_unreclaimable; /* All pages pinned */ #if defined CONFIG_COMPACTION || defined CONFIG_CMA /* pfn where the last incremental compaction isolated free pages */ unsigned long compact_cached_free_pfn; #endif #ifdef CONFIG_MEMORY_HOTPLUG /* see spanned/present_pages for more description */ <span style="white-space:pre"> /*该锁用于保护伙伴系统数据结构。即保护free_area相关数据。*</span>/ seqlock_t span_seqlock; #endif #ifdef CONFIG_CMA /* * CMA needs to increase watermark levels during the allocation * process to make sure that the system is not starved. */ unsigned long min_cma_pages; #endif <span style="white-space:pre"> /*伙伴系统的主要变量。这个数组定义了11个队列,每个队列中的元素都是大小为2^n的页面*/ </span> struct free_area free_area[MAX_ORDER]; #ifndef CONFIG_SPARSEMEM /* * Flags for a pageblock_nr_pages block. See pageblock-flags.h. * In SPARSEMEM, this map is stored in struct mem_section */ /*本管理区里的页面标志数组*/ unsigned long *pageblock_flags; #endif /* CONFIG_SPARSEMEM */ #ifdef CONFIG_COMPACTION /* * On compaction failure, 1<<compact_defer_shift compactions * are skipped before trying again. The number attempted since * last failure is tracked with compact_considered. */ unsigned int compact_considered; unsigned int compact_defer_shift; int compact_order_failed; #endif <span style="white-space:pre"> /*填充的未用字段,确保后面的字段是缓存行对齐的*/ </span> ZONE_PADDING(_pad1_) <span style="white-space:pre"> </span>/* <span style="white-space:pre"> </span> * lru用于确定哪些字段是活跃的,哪些不是活跃的, <span style="white-space:pre"> </span> *并据此确定应当被写回到磁盘以释放内存。 <span style="white-space:pre"> </span>*/ /* Fields commonly accessed by the page reclaim scanner */ spinlock_t lru_lock; struct lruvec lruvec; unsigned long pages_scanned; /* since last reclaim */ unsigned long flags; /* zone flags, see below */ /* Zone statistics */ atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; /* * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on * this zone's LRU. Maintained by the pageout code. */ unsigned int inactive_ratio; ZONE_PADDING(_pad2_) /* Rarely used or read-mostly fields */ /* * wait_table -- the array holding the hash table * wait_table_hash_nr_entries -- the size of the hash table array * wait_table_bits -- wait_table_size == (1 << wait_table_bits) * * The purpose of all these is to keep track of the people * waiting for a page to become available and make them * runnable again when possible. The trouble is that this * consumes a lot of space, especially when so few things * wait on pages at a given time. So instead of using * per-page waitqueues, we use a waitqueue hash table. * * The bucket discipline is to sleep on the same queue when * colliding and wake all in that wait queue when removing. * When something wakes, it must check to be sure its page is * truly available, a la thundering herd. The cost of a * collision is great, but given the expected load of the * table, they should be so rare as to be outweighed by the * benefits from the saved space. * * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the * primary users of these fields, and in mm/page_alloc.c * free_area_init_core() performs the initialization of them. */ wait_queue_head_t * wait_table; unsigned long wait_table_hash_nr_entries; unsigned long wait_table_bits; /* * Discontig memory support fields. */ /*管理区属于的节点*/ struct pglist_data *zone_pgdat; /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ unsigned long zone_start_pfn; /*管理区的页面在mem_map中的偏移*/ /* * zone_start_pfn, spanned_pages and present_pages are all * protected by span_seqlock. It is a seqlock because it has * to be read outside of zone->lock, and it is done in the main * allocator path. But, it is written quite infrequently. * * The lock is declared along with zone->lock because it is * frequently read in proximity to zone->lock. It's good to * give them a chance of being in the same cacheline. */ unsigned long spanned_pages; /* total size, including holes */ unsigned long present_pages; /* amount of memory (excluding holes) */ /* * rarely used fields: */ const char *name; #ifdef CONFIG_MEMORY_ISOLATION /* * the number of MIGRATE_ISOLATE *pageblock*. * We need this for free page counting. Look at zone_watermark_ok_safe. * It's protected by zone->lock */ int nr_pageblock_isolate; #endif }
标签:
原文地址:http://blog.csdn.net/u012681083/article/details/51330291