码迷,mamicode.com
首页 > 其他好文 > 详细

【CQOI2016纯净整合】BZOJ-4519~4524 (5/6)

时间:2016-05-07 13:05:41      阅读:256      评论:0      收藏:0      [点我收藏+]

标签:

感觉CQOI的难度挺好的,比较贴近自身,所以拿出来做了一下


 

 

CQOI2016 Day1 T1:不同的最小割

涉及算法:最小割/分治/最小割树

思路:

最小割树裸题,直接分治最小割,记录下答案,最后排序一下,统计不同的答案即可

CODE:

技术分享
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<0||ch>9){if(ch==-)f=-1;ch=getchar();}
    while(ch>=0&&ch<=9){x=x*10+ch-0;ch=getchar();}
    return x*f;
}
#define maxn 1000
#define maxm 100010
int n,m,q,t,ans[maxn],tot,id[maxn],tmp[maxn];
struct Edgenode{int next,to,cap;}edge[maxm];
int head[maxn],cnt=1;
void add(int u,int v,int w)
{cnt++; edge[cnt].to=v; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].cap=w;}
void insert(int u,int v,int w) {add(u,v,w); add(v,u,w);}
int dis[maxn],que[maxn<<1],cur[maxn],S,T;
bool bfs()
{
    memset(dis,-1,sizeof(dis));
    que[0]=S; dis[S]=0; int he=0,ta=1;
    while (he<ta)
        {
            int now=que[he++];
            for (int i=head[now]; i; i=edge[i].next)
                if (edge[i].cap && dis[edge[i].to]==-1)
                    dis[edge[i].to]=dis[now]+1,que[ta++]=edge[i].to;
        }
    return dis[T]!=-1;
}
int dfs(int loc,int low)
{
    if (loc==T) return low;
    int w,used=0;
    for (int i=cur[loc]; i; i=edge[i].next)
        if (edge[i].cap && dis[edge[i].to]==dis[loc]+1)
            {
                w=dfs(edge[i].to,min(low-used,edge[i].cap));
                edge[i].cap-=w; edge[i^1].cap+=w;
                used+=w; if (edge[i].cap) cur[loc]=i;
                if (used==low) return low;
            }
    if (!used) dis[loc]=-1;
    return used;
}
#define inf 0x7fffffff
int dinic()
{
    int tmp=0;
    while (bfs())
        {
            for (int i=1; i<=n; i++) cur[i]=head[i];
            tmp+=dfs(S,inf);
        }
    return tmp;
}
void init()
{
    cnt=1;
    memset(ans,0,sizeof(ans));
    memset(head,0,sizeof(head));
}
bool visit[maxn];
void DFS(int x)
{
    visit[x]=1;
    for (int i=head[x]; i; i=edge[i].next)
        if (edge[i].cap && !visit[edge[i].to])
            DFS(edge[i].to);
}
void work(int L,int R)
{
    if (L==R) return;
    for (int i=2; i<=cnt; i+=2) 
        edge[i].cap=edge[i^1].cap=(edge[i].cap+edge[i^1].cap)>>1;
    S=id[L],T=id[R];
    int maxflow=dinic();
    memset(visit,0,sizeof(visit)); DFS(S);
//    for (int i=1; i<=n; i++) if (visit[i])
//        for (int j=1; j<=n; j++) if (!visit[j])
//            ans[i][j]=ans[j][i]=min(ans[i][j],maxflow);
    ans[++tot]=maxflow;
    int l=L,r=R;
    for (int i=L; i<=R; i++)
        if (visit[id[i]])
            tmp[l++]=id[i];
        else tmp[r--]=id[i];
    for (int i=L; i<=R; i++) id[i]=tmp[i];
    work(L,l-1); work(r+1,R);
}        
int main()
{
//    freopen("mincuto.in","r",stdin);
//    freopen("mincuto.out","w",stdout);
    init();
    n=read(),m=read();
    for (int i=1; i<=n; i++) id[i]=i;
    for (int u,v,w,i=1; i<=m; i++)
    u=read(),v=read(),w=read(),insert(u,v,w);
    work(1,n);
    sort(ans+1,ans+tot+1);
    int an=1;
    for (int i=2; i<=tot; i++) if (ans[i]!=ans[i-1]) an++;
    printf("%d\n",an);
    return 0;
}
Day1T1

 

 


 

 

CQOI2016 Day1 T2:K远点对

涉及算法:凸包/KD-Tree/可并堆

思路:

先把所有点都放到kd树里去,维护一个小根堆,枚举每个点。每次在kd树种查询的时候,就相当于当前的最优解是堆顶,像查最远点对一样在kd树里查就行了。 

CODE:

技术分享
暂时不能实现,等学习KD-Tree后填坑
Day1T2(坑)

 


 

 

CQOI2016 Day1 T3:手机号码

涉及算法:数位DP/记忆化搜索

思路:

涉及F[i][j][0/1][0/1][0/1][0/1][0/1]表示位数为i,最高位为j,最高位连续两个是否是相同的,是否有连续3个相同的,是否有4,是否有8,前缀和原数前缀的大小关系

枚举k1,k2,k3,k4,k5转移统计答案即可,注意一些细节(记忆化搜索应该比较好实现)

CODE:

技术分享
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long F[20][15][2][2][2][2][2],l,r;
int p[20],num;
long long cal(long long x)
{
    memset(F,0,sizeof(F));
    long long ans=0; int len=0,digit[12],a,b,c,d,e;
    while(x){digit[++len]=x%10; x/=10;}
    reverse(digit+1,digit+len+1);
    F[0][10][0][0][0][0][1]=1;
    for (int i=0; i<=len-1; i++)
        for (int j=0; j<=10; j++)
            for (int k1=0; k1<=1; k1++)
                for (int k2=0; k2<=1; k2++)
                    for (int k3=0; k3<=1; k3++)
                        for (int k4=0; k4<=1; k4++)
                            for (int k5=0; k5<=1; k5++)
                                if (F[i][j][k1][k2][k3][k4])
                                    for (int k=0; k<=9; k++)
                                        {
                                            if (k5 && (k>digit[i+1])) continue;
                                            if (k==j) a=1; else a=0;
                                            if (k2==0) b=(k1+a)==2; else b=k2;
                                            if (k3==0) c=(k==4); else c=k3;
                                            if (k4==0) d=(k==8); else d=k4;
                                            if ((c+d)==2) continue;
                                            if (k5 && (k==digit[i+1])) e=1; else e=0;
                                            F[i+1][k][a][b][c][d][e]+=F[i][j][k1][k2][k3][k4][k5]; 
                                        }
    for (int i=0; i<=9; i++)
        for (int k1=0; k1<=1; k1++)
            for (int k3=0; k3<=1; k3++)
                for (int k4=0; (k4<=1)&&(k4+k3<2); k4++)
                    ans+=F[len][i][k1][1][k3][k4][0];
    return ans;
}
int main()
{
    scanf("%lld%lld",&l,&r);
    printf("%lld\n",cal(r+1)-cal(l));
    return 0;
}
Day1T3

 


 

 

CQOI2016 Day2 T1:密钥破解

涉及算法:数论/Pollard_Rho分解/ExGcd/乘法逆元/快速幂/快速乘/模拟

思路:

用Pollard_Rho分解N,得到P,Q,同时计算出r;剩下的根据题意模拟

利用ExGcd求解e在r意义下的逆元,最后答案用快速幂算出即可

CODE:

技术分享
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std;
long long read()
{
    long long x=0,f=1; char ch=getchar();
    while (ch<0 || ch>9) {if (ch==-) f=-1; ch=getchar();}
    while (ch>=0 && ch<=9) {x=x*10+ch-0; ch=getchar();}
    return x*f;
}
long long e,N,c,r,P,Q;
long long Quick_Mul(long long x,long long y,long long p)
{
    long long re=0;
    for (long long i=y; i; i>>=1,x=(x+x)%p)
        if (i&1) re=(re+x)%p;
    return re;
}
long long Quick_Pow(long long x,long long y,long long p)
{
    long long re=1;
    for (long long i=y; i; i>>=1,x=Quick_Mul(x,x,p))
        if (i&1) re=Quick_Mul(re,x,p);
    return re;
}
void Exgcd(long long a,long long b,long long &x,long long &y)
{
    if (b==0) {x=1; y=0; return;}
    Exgcd(b,a%b,y,x); y-=(a/b)*x;
}
long long GetInv(long long n,long long p)
{
    long long x,y;
    Exgcd(n,p,x,y);
    return (x%p+p)%p;
}
long long Gcd(long long a,long long b)
{
    if (b==0) return a; 
    return Gcd(b,a%b);
}
#define T 10007
long long Pollard_Rho(long long n)
{
    long long x,y,cnt=1,k=2;
    x=rand()%(n-1)+1; y=x;
    while (1)
        {
            cnt++;
            x=(Quick_Mul(x,x,n)+T)%n;
            long long gcd=Gcd(abs(x-y),n);
            if (1<gcd && gcd<n) return gcd;
            if (x==y) return n;
            if (cnt==k) y=x,k<<=1;
        }
}
int main()
{
    srand(T);
    e=read(),N=read(),c=read();
    P=Pollard_Rho(N); Q=N/P;
    r=(P-1)*(Q-1);
    long long Inv=GetInv(e,r);
    printf("%lld %lld",Inv,Quick_Pow(c,Inv,N));
    return 0;
}
Day2T1

 


 

 

CQOI2016 Day2 T2:路由表

涉及算法:Trie树/单调栈/进制转化

思路:

A/Q操作都对IP进行二进制转化后进行处理

A操作将转化后的IP前掩码为加到Trie树中,结尾打上时间戳标记

Q操作,二进制在Trie树上跑跑,将答案记录下来,排序后统计一下答案即可,或者利用单调栈维护即可

CODE:

技术分享
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int m,Ip[50];
#define maxn 1000100
int ch[maxn][2],pos[maxn],rt=1,cnt=1,sz=1,ti=0;
void Insert(int *ip,int l,int x)
{
    int now=rt;
    for (int i=1; i<=l; i++)
        {
            if (!ch[now][ip[i]])
                ch[now][ip[i]]=++sz;
            now=ch[now][ip[i]];
        }
    pos[now]=x;
}
struct Node
{
    int a,b;
    bool operator < (const Node & A) const
        {return a<A.a;}
};
Node stack[maxn]; int top;
int Query(int *ip,int L,int R)
{
    int now=rt,re=0,m=-1;  top=0;
    for (int i=1; i<=32; i++)
        {
            if (!ch[now][ip[i]]) break;
            now=ch[now][ip[i]];
            if (pos[now] && pos[now]<=R)
                stack[++top]=Node{pos[now],i+1};  
        }
    sort(stack+1,stack+top+1);
    for (int i=1; i<=top; i++)
        {
            Node now=stack[i];
            if (m<now.b) {m=now.b; if (now.a>=L) re++;}
        }
    return re;
}
int main()
{
    scanf("%d",&m);
    for (int i=1; i<=m; i++)
        {
            char opt[5]; scanf("%s",opt);
            if (opt[0]==A)
                {
                    ti++; int ip,len=0,l;
                    memset(Ip,0,sizeof(Ip));
                    for (int j=1; j<=3; j++)
                        {
                            scanf("%d.",&ip);
                            for (int k=7; k>=0; k--)
                                Ip[++len]=(1&(ip>>k));
                            
                        }
                    scanf("%d/",&ip);
                    for (int k=7; k>=0; k--) Ip[++len]=(1&(ip>>k));
                    scanf("%d",&l);
                    //for (int j=1; j<=len; j++) printf("%d",Ip[j]); puts("");
                    Insert(Ip,l,ti);
                }
            if (opt[0]==Q)
                {
                    int ip,len=0,l,r;
                    memset(Ip,0,sizeof(Ip));
                    for (int j=1; j<=3; j++)
                        {
                            scanf("%d.",&ip);
                            for (int k=7; k>=0; k--)
                                Ip[++len]=(1&(ip>>k));
                        }
                    scanf("%d",&ip);
                    for (int k=7; k>=0; k--) Ip[++len]=(1&(ip>>k));
                    scanf("%d %d",&l,&r);
                    //for (int j=1; j<=len; j++) printf("%d",Ip[j]); puts("");
                    printf("%d\n",Query(Ip,l,r));
                }
        }
    return 0;
}
Day2T2

 


 

 

CQOI2016 Day2 T3:伪光滑数

涉及算法:可持久化可并堆/DP/堆/贪心/暴力

思路:

预处理出$<128$的全部质数,那么很显然,可以对数进行拆分了.

考虑题目中所说的, 所以不妨枚举倍数,对于$prime[i]^{j}$,扔进堆中

然后从队首取K次即可,对于每次取出的数,除以它的最大质因子,乘上比他最大质因子小的最大的质数,再扔回堆中

可持久化可并堆+DP的方法并不会....(留坑以后来看看)

CODE:

技术分享
#include<iostream> 
#include<cstdio> 
#include<algorithm> 
#include<queue> 
using namespace std; 
struct Node 
{ 
    long long data; int zs,nt,mp; 
    bool operator < (const Node & A) const
        {return data<A.data;} 
}now,tmp;
priority_queue <Node> q; 
long long n,x; int k,j; 
int prime[50]={0,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127},cnt=31; 
int main() 
{ 
    scanf("%lld%d",&n,&k);
    for (int i=1; i<=cnt; i++)  
        for (x=j=1; ; j++) 
            { 
                x*=(long long)prime[i]; if (x>n) break;
                tmp.data=x,tmp.zs=j,tmp.nt=i-1,tmp.mp=i;
                //printf("%lld %d %d %d\n",tmp.data,tmp.zs,tmp.nt,tmp.mp);
                q.push(tmp);  
            } 
    while (k--) 
        { 
            now=q.top(); q.pop(); 
            if (now.zs>1) 
                for (int i=now.nt; i; i--) 
                    {   
                        tmp.data=(long long)now.data/prime[now.mp]*prime[i]; tmp.zs=now.zs-1; tmp.nt=i; tmp.mp=now.mp; 
                        //printf("%lld %d %d %d\n",tmp.data,tmp.zs,tmp.nt,tmp.mp);
                        q.push(tmp); 
                    } 
        } 
    printf("%lld\n",now.data); 
    return 0; 
}
Day2T3

 


据azui神犇所说..CQOI都是 偏题,语文题,模板题 ...但是感觉今年的题目还是不错的,比较有价值

 

暴露的一些问题:

1.有题目可以想到正确做法,但是实现起来有差错,细节上的问题尤其容易出现

2.一些实用的算法和数据结构并不熟练,需要重视起来

3.调试的时间过长,发现问题不敏锐,严重影响进度,以后应该加强

 

启发:

1.对于想不出来最优解的问题,可以考虑想时间复杂度次优的方法,尽可能的优,在实际中能得到大把的分数,或者卡时A

2.数位DP方面需要总结一下技巧和方法,只有总结出了方法,才能面对各种题都不慌

3.认真读题,想题做题时要确保理解了题意,才能更深入的想出优秀的算法,很多时候应该按照题意去模拟

4.一些非反演的数论题,可能只是需要进行一些转化,然后多种东西嵌套求解,不用慌张;对于跟质因子相关的题目,入手点在质因子上,往往能得到高效的结果

 

【CQOI2016纯净整合】BZOJ-4519~4524 (5/6)

标签:

原文地址:http://www.cnblogs.com/DaD3zZ-Beyonder/p/5467855.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!