标签:
本期内容:
1 在线动态计算分类最热门商品案例回顾与演示
2 基于案例贯通Spark Streaming的运行源码
一切不能进行实时流处理的数据都是无效的数据。在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下。
Spark Streaming运行时与其说是Spark Core上的一个流式处理框架,不如说是Spark Core上的一个最复杂的应用程序。如果可以掌握Spark streaming这个复杂的应用程序,那么其他的再复杂的应用程序都不在话下了。这里选择Spark Streaming作为版本定制的切入点也是大势所趋。
第一部分:案例赏析
package com.dt.spark.sparkstreaming import com.robinspark.utils.ConnectionPool import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.spark.sql.hive.HiveContext import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType} import org.apache.spark.streaming.{Seconds, StreamingContext} /** * 使用Spark Streaming+Spark SQL来在线动态计算电商中不同类别中最热门的商品排名,例如手机这个类别下面最热门的三种手机、电视这个类别 * 下最热门的三种电视,该实例在实际生产环境下具有非常重大的意义; * * @author DT大数据梦工厂 * 新浪微博:http://weibo.com/ilovepains/ * * * 实现技术:Spark Streaming+Spark SQL,之所以Spark Streaming能够使用ML、sql、graphx等功能是因为有foreachRDD和Transform * 等接口,这些接口中其实是基于RDD进行操作,所以以RDD为基石,就可以直接使用Spark其它所有的功能,就像直接调用API一样简单。 * 假设说这里的数据的格式:user item category,例如Rocky Samsung Android */ object OnlineTheTop3ItemForEachCategory2DB { def main(args: Array[String]){ /** * 第1步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息, */ val conf = new SparkConf() //创建SparkConf对象 conf.setAppName("OnlineTheTop3ItemForEachCategory2DB") //设置应用程序的名称,在程序运行的监控界面可以看到名称 conf.setMaster("spark://Master:7077") //此时,程序在Spark集群 //conf.setMaster("local[2]") //设置batchDuration时间间隔来控制Job生成的频率并且创建Spark Streaming执行的入口 val ssc = new StreamingContext(conf, Seconds(5)) ssc.checkpoint("/root/Documents/SparkApps/checkpoint") val userClickLogsDStream = ssc.socketTextStream("Master", 9999) val formattedUserClickLogsDStream = userClickLogsDStream.map(clickLog => (clickLog.split(" ")(2) + "_" + clickLog.split(" ")(1), 1)) // val categoryUserClickLogsDStream = formattedUserClickLogsDStream.reduceByKeyAndWindow((v1:Int, v2: Int) => v1 + v2, // (v1:Int, v2: Int) => v1 - v2, Seconds(60), Seconds(20)) val categoryUserClickLogsDStream = formattedUserClickLogsDStream.reduceByKeyAndWindow(_+_, _-_, Seconds(60), Seconds(20)) categoryUserClickLogsDStream.foreachRDD { rdd => { if (rdd.isEmpty()) { println("No data inputted!!!") } else { val categoryItemRow = rdd.map(reducedItem => { val category = reducedItem._1.split("_")(0) val item = reducedItem._1.split("_")(1) val click_count = reducedItem._2 Row(category, item, click_count) }) val structType = StructType(Array( StructField("category", StringType, true), StructField("item", StringType, true), StructField("click_count", IntegerType, true) )) val hiveContext = new HiveContext(rdd.context) val categoryItemDF = hiveContext.createDataFrame(categoryItemRow, structType) categoryItemDF.registerTempTable("categoryItemTable") val reseltDataFram = hiveContext.sql("SELECT category,item,click_count FROM (SELECT category,item,click_count,row_number()" + " OVER (PARTITION BY category ORDER BY click_count DESC) rank FROM categoryItemTable) subquery " + " WHERE rank <= 3") reseltDataFram.show() val resultRowRDD = reseltDataFram.rdd resultRowRDD.foreachPartition { partitionOfRecords => { if (partitionOfRecords.isEmpty){ println("This RDD is not null but partition is null") } else { // ConnectionPool is a static, lazily initialized pool of connections val connection = ConnectionPool.getConnection() partitionOfRecords.foreach(record => { val sql = "insert into categorytop3(category,item,client_count) values(‘" + record.getAs("category") + "‘,‘" + record.getAs("item") + "‘," + record.getAs("click_count") + ")" val stmt = connection.createStatement(); stmt.executeUpdate(sql); }) ConnectionPool.returnConnection(connection) // return to the pool for future reuse } } } } } } /** * 在StreamingContext调用start方法的内部其实是会启动JobScheduler的Start方法,进行消息循环,在JobScheduler * 的start内部会构造JobGenerator和ReceiverTacker,并且调用JobGenerator和ReceiverTacker的start方法: * 1,JobGenerator启动后会不断的根据batchDuration生成一个个的Job * 2,ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动ReceiverSupervisor),在Receiver收到 * 数据后会通过ReceiverSupervisor存储到Executor并且把数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker * 内部会通过ReceivedBlockTracker来管理接受到的元数据信息 * 每个BatchInterval会产生一个具体的Job,其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD * 的DAG而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler,在JobScheduler中通过线程池的方式找到一个 * 单独的线程来提交Job到集群运行(其实是在线程中基于RDD的Action触发真正的作业的运行),为什么使用线程池呢? * 1,作业不断生成,所以为了提升效率,我们需要线程池;这和在Executor中通过线程池执行Task有异曲同工之妙; * 2,有可能设置了Job的FAIR公平调度的方式,这个时候也需要多线程的支持; * */ ssc.start() ssc.awaitTermination() } }
第二部分源码解析
1. 根据SparkConf配置信息创建StreamingContext对象
private[streaming] def createNewSparkContext(conf: SparkConf): SparkContext = { new SparkContext(conf) }
由此可见,SparkStreaming确实就是Spark Core上一个复杂的特殊的应用程序。
2. 做checkpint持久化
ssc.checkpoint("/root/Documents/SparkApps/checkpoint")
3. 创建Socket 获取输入流
def socketTextStream( hostname: String, port: Int, storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2 ): ReceiverInputDStream[String] = withNamedScope("socket text stream") { socketStream[String](hostname, port, SocketReceiver.bytesToLines, storageLevel) }
4.构建Receiver来接收数据(SocketInputDstream继承自ReceiverInputDStream)
private[streaming] class SocketInputDStream[T: ClassTag]( ssc_ : StreamingContext, host: String, port: Int, bytesToObjects: InputStream => Iterator[T], storageLevel: StorageLevel ) extends ReceiverInputDStream[T](ssc_) { def getReceiver(): Receiver[T] = { new SocketReceiver(host, port, bytesToObjects, storageLevel) } }
abstract class ReceiverInputDStream[T: ClassTag](ssc_ : StreamingContext) extends InputDStream[T](ssc_) {
5. SocketServer对象调用Receive获取网络数据
def receive() { var socket: Socket = null try { logInfo("Connecting to " + host + ":" + port) socket = new Socket(host, port) logInfo("Connected to " + host + ":" + port) val iterator = bytesToObjects(socket.getInputStream()) while(!isStopped && iterator.hasNext) { store(iterator.next) } if (!isStopped()) { restart("Socket data stream had no more data") } else { logInfo("Stopped receiving") }
}catch{
case e:java.net.ConnectException =>
restart("Error connecting to " + host + ":" + port, e)
case NonFatal(e) =>
logWarning("Error receiving data", e)
restart("Error receiving data", e)
}finally{
if (socket != null){
socket.close()
logInfo("Closed socket to " + host + ":" +port)
}
}
}
6 . DStream根据时间间隔生成RDD,放到hashMap中
// RDDs generated, marked as private[streaming] so that testsuites can access it @transient private[streaming] var generatedRDDs = new HashMap[Time, RDD[T]] ()
7. DStream经过一系列Transformation操作,在ForEachDStream中生成job
private[streaming] class ForEachDStream[T: ClassTag] ( parent: DStream[T], foreachFunc: (RDD[T], Time) => Unit, displayInnerRDDOps: Boolean ) extends DStream[Unit](parent.ssc) { override def dependencies: List[DStream[_]] = List(parent) override def slideDuration: Duration = parent.slideDuration override def compute(validTime: Time): Option[RDD[Unit]] = None override def generateJob(time: Time): Option[Job] = { parent.getOrCompute(time) match { case Some(rdd) => val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) { foreachFunc(rdd, time) } Some(new Job(time, jobFunc)) case None => None } } }
8. JobScheduler进行调度(ssc.start())
def start(): Unit = synchronized { if (eventLoop != null) return // scheduler has already been started logDebug("Starting JobScheduler") eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") { override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event) override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e) } eventLoop.start() // attach rate controllers of input streams to receive batch completion updates for { inputDStream <- ssc.graph.getInputStreams rateController <- inputDStream.rateController } ssc.addStreamingListener(rateController) listenerBus.start(ssc.sparkContext) receiverTracker = new ReceiverTracker(ssc) inputInfoTracker = new InputInfoTracker(ssc) receiverTracker.start() jobGenerator.start() logInfo("Started JobScheduler") }
9.EventLoop(开启新线程进行消息循环)
private val eventThread = new Thread(name) { setDaemon(true)
10 processEvent(作业启动,完成和失败的解决方式)
private def processEvent(event: JobSchedulerEvent) { try { event match { case JobStarted(job, startTime) => handleJobStart(job, startTime) case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime) case ErrorReported(m, e) => handleError(m, e) } } catch { case e: Throwable => reportError("Error in job scheduler", e) } }
11 runDummySparkJob
private def runDummySparkJob(): Unit = { if (!ssc.sparkContext.isLocal) { ssc.sparkContext.makeRDD(1 to 50, 50).map(x => (x, 1)).reduceByKey(_ + _, 20).collect() } assert(getExecutors.nonEmpty) }
总结:
在StreamingContext调用start方法的内部其实是会启动JobScheduler的Start方法,进行消息循环,在JobScheduler的start内部会构造JobGenerator和ReceiverTacker,并且调用JobGenerator和ReceiverTacker的start方法:
1.JobGenerator启动后会不断的根据batchDuration生成一个个的Job
2.ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动ReceiverSupervisor),在Receiver收到数据后会通过ReceiverSupervisor存储到Executor并且把数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker内部会通过ReceivedBlockTracker来管理接受到的元数据信息.
每个BatchInterval会产生一个具体的Job,其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD的DAG而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler,在JobScheduler中通过线程池的方式找到一个单独的线程来提交Job到集群运行(其实是在线程中基于RDD的Action触发真正的作业的运行),为什么使用线程池呢?
1,作业不断生成,所以为了提升效率,我们需要线程池;这和在Executor中通过线程池执行Task有异曲同工之妙;
2,有可能设置了Job的FAIR公平调度的方式,这个时候也需要多线程的支持.
Spark版本定制第5天:案列解析Spark Streaming运行源码
标签:
原文地址:http://www.cnblogs.com/pzwxySpark/p/Spark5.html