标签:style blog http color io for ar div
来源:http://poj.org/problem?id=3926
题意:行n <= 100, 列m <= 10000,类似于数字三角形,一个人要从底下往上走,每层中可以左右走,但选定方向不能回头(向左不能再向右),每经过一段获得该段的一个值,并走了该段的距离,在同一层走的距离不能超过k。问走到最顶头,获得的总值最大是多少。
分析:dp[i][j]表示走到第i行第j列,获得的值最大为多少。则dp[i][j] = max(dp[i+1][p] + sum(p to j)),sum(p to j)表示第i行从第p列到第j列的值的和,同时p需要满足abs(p-j) <= k。前缀和处理sum,枚举i,j,p,这样是o(nm^2)的复杂度,超时。
如果我们只考虑从左往右走,那么就是类似求有长度上限的最大子段和的模型了。sum(k)表示第i行前k列的前缀和,改写转移方程 dp[i][j] = max(dp[i+1][p] + sum(j) - sum(p)) = max(dp[i+1][p] - sum(p)) + sum(j),这下很清楚了,前一项就可以用单调队列来维护,使得状态转移的复杂度降到均摊o(1)。然后从右往左走再做一遍就可以了。
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 using namespace std; 5 6 int n, m, k; 7 int a[120][10100], b[120][10100], dp[120][10100]; 8 struct que{ 9 int v, d; 10 } q[10100]; 11 inline int in(){ 12 char ch = getchar(); 13 while((ch < ‘0‘ || ch > ‘9‘) && ch != ‘-‘) ch = getchar(); 14 bool flag = false; 15 if (ch == ‘-‘){ 16 flag = true; 17 ch = getchar(); 18 } 19 int ans = 0; 20 while(ch >= ‘0‘ && ch <= ‘9‘){ 21 ans = ans*10 + ch-‘0‘; 22 ch = getchar(); 23 } 24 if (flag) return -ans; 25 return ans; 26 } 27 int main() 28 { 29 while(scanf("%d%d%d", &n, &m, &k) && (n+m+k)) 30 { 31 for (int i = 0; i <= n; i++) 32 for (int j = 0; j < m; j++) 33 a[i][j] = in(); 34 for (int i = 0; i <= n; i++) 35 for (int j = 0; j < m; j++) 36 b[i][j] = in(); 37 for (int j = 0; j <= m; j++) 38 dp[n+1][j] = 0; 39 for (int i = n; i >= 0; i--){ 40 int sum, head, tail, dis; 41 sum = head = tail = dis = 0; 42 dp[i][0] = dp[i+1][0]; 43 q[tail].v = dp[i][0]; 44 q[tail++].d = 0; 45 for (int j = 1; j <= m; j++){ 46 sum += a[i][j-1]; 47 dis += b[i][j-1]; 48 while(head < tail && dis - q[head].d > k) head ++; 49 while(head < tail && q[tail-1].v <= dp[i+1][j] - sum) tail --; 50 q[tail].d = dis; 51 q[tail++].v = dp[i+1][j] - sum; 52 dp[i][j] = q[head].v + sum; 53 } 54 sum = head = tail = dis = 0; 55 q[tail].v = dp[i+1][m]; 56 q[tail++].d = 0; 57 for (int j = m-1; j >= 0; j--){ 58 sum += a[i][j]; 59 dis += b[i][j]; 60 while(head < tail && dis - q[head].d > k) head ++; 61 while(head < tail && q[tail-1].v <= dp[i+1][j] - sum) tail --; 62 q[tail].d = dis; 63 q[tail++].v = dp[i+1][j] - sum; 64 if (q[head].v + sum > dp[i][j]) dp[i][j] = q[head].v + sum; 65 } 66 } 67 int ans = 0; 68 for (int i = 0; i <= m; i++) 69 if (dp[0][i] > ans) ans = dp[0][i]; 70 printf("%d\n", ans); 71 } 72 return 0; 73 }
POJ 3926 Parade 单调队列优化DP,布布扣,bubuko.com
标签:style blog http color io for ar div
原文地址:http://www.cnblogs.com/james47/p/3880218.html