码迷,mamicode.com
首页 > 其他好文 > 详细

OpenCV 之 图像平滑

时间:2016-05-09 01:40:33      阅读:151      评论:0      收藏:0      [点我收藏+]

标签:

OpenCV 之 图像平滑

1  图像平滑

  图像平滑,可用来对图像进行去噪 (noise reduction) 或 模糊化处理 (blurring),实际上图像平滑仍然属于图像空间滤波的一种 (低通滤波)

  既然是滤波,则图像中任一点 (x, y),经过平滑滤波后的输出 g(x, y) 如下:

g(x,y)=s=aat=bbw(s,t)f(x+s,y+t)g(x,y)=∑s=−aa∑t=−bbw(s,t)f(x+s,y+t)

  以 3X3 的滤波器为例 (即 a=b=1),则矩阵 Mx 和 Mf 对应的元素乘积之和,就是 g(x, y)

  其中,Mx=???w(1,1)w(0,1)w(1,1)w(1,0)w(0,0)w(1,0)w(1,1)w(1,1)w(1,1)???Mf=???f(x1,y1)f(x,y1)f(x+1,y1)f(x1,y)f(x,y)f(x+1,y)f(x1,y+1)f(x+1,y+1)f(x+1,y+1)???Mx=[w(−1,−1)w(−1,0)w(−1,1)w(0,−1)w(0,0)w(1,1)w(1,−1)w(1,0)w(1,1)]Mf=[f(x−1,y−1)f(x−1,y)f(x−1,y+1)f(x,y−1)f(x,y)f(x+1,y+1)f(x+1,y−1)f(x+1,y)f(x+1,y+1)]

2  OpenCV 函数

  OpenCV 中主要有四个函数涉及到图像平滑,分别是盒式滤波 (box),高斯滤波 (Gaussian),中值滤波 (median),双边滤波 (bilateral)

2.1  盒式滤波

  输出图像的任一像素灰度值,等于其所有邻域像素灰度值的平均值

  模糊化核为,K=α?????111111............111111?????K=α[11...1111...11...11...11]  其中,α={1ksize.weidthksize.height1when normalize = trueotherwiseα={1ksize.weidth∗ksize.heightwhen normalize = true1otherwise

技术分享
void cv::boxFilter (     
    InputArray   src, // 输入图像
    OutputArray  dst, // 输出图像
    int    ddepth,      // 输出图像深度,-1 表示等于 src.depth()
    Size   ksize,       // 模糊化核 (kernel) 的大小
    Point  anchor = Point(-1,-1),       // 锚点位置,缺省值表示 anchor 位于模糊核的正中心
    bool   normalize = true,            // 是否归一化处理
    int    borderType = BORDER_DEFAULT  // 边界模式
)
技术分享

  取 ddepth = 1,normalize = true,则可以得到模糊化函数 (blur)

boxFilter( src, dst, -1, ksize, anchor, true, borderType );

  模糊化函数 (blur),本质上是一个输入和输出图像深度 (ddepth) 相同,并且做归一化处理的盒式滤波器

技术分享
void cv::blur (    
    InputArray  src,  
    OutputArray dst,      
Size ksize, Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT )
技术分享

2.2  中值滤波

  中值滤波最为简单,常用来消除椒盐噪声

  输出图像中 (x, y) 点处的像素值,等于输入图像以 (x, y) 为中心点的邻域像素 (ksize x ksize) 平均值

void cv::medianBlur ( 
    InputArray   src,
    OutputArray  dst,
    int  ksize   // 滤波器孔径大小,一般为奇数且大于 1,比如 3, 5, 7, ...
)     

2.3  高斯滤波

  高斯滤波最为有用,它是根据当前像素和邻域像素之间,空间距离的不同,计算得出一个高斯核 (邻域像素的加权系数),

  然后,高斯核从左至右、从上到下遍历输入图像,与输入图像的像素值求卷积和,得到输出图像的各个像素值

  G0(x,y)=Ae(xμx)22σ2x+(yμy)22σ2yG0(x,y)=Ae−(x−μx)22σx2+−(y−μy)22σy2

  无须理会公式的复杂,只需要记住一点即可:邻域像素距离当前像素越远 (saptial space),则其相应的加权系数越小

  为了便于直观理解,可看下面这个一维高斯核,推而广之将 G(x) 曲线以 x=0 这条轴为中心线,旋转360度可想象其二维高斯核

    技术分享

技术分享
void cv::GaussianBlur ( 
    InputArray   src, 
    OutputArray  dst,
    Size    ksize,       // 高斯核的大小
    double  sigmaX,      // 高斯核在x方向的标准差
    double  sigmaY = 0,  // 高斯核在y方向的标准差,缺省为 0,表示 sigmaY = sigmaX
    int     borderType = BORDER_DEFAULT 
)  
技术分享

  注意: 高斯核的大小 Size(width, height),w 和 h 二者不必相同但必须都是奇数,若都设为 0,则从 sigma 自动计算得出

2.4  双边滤波

  上面三种方法都是低通滤波,因此在消除噪声的同时,也常会将边缘信息模糊化。双边滤波和高斯滤波类似,但是它将邻域像素的加权系数分为两部分,

  第一部分与高斯滤波的完全相同,第二部分则考虑当前像素和邻域像素之间灰度值的差异,从而在消除噪声的基础上,也较好的保留了图像的边缘信息

技术分享
void cv::bilateralFilter (
    InputArray    src,
    OutputArray   dst,
    int     d,    // 像素邻域直径,若为非正值,则从 sigmaSpace 自动计算得出
    double  sigmaColor,  // 颜色空间的标注方差
    double  sigmaSpace,  // 坐标空间的标准方差
    int     borderType = BORDER_DEFAULT 
)
技术分享

   注意 1)  双边滤波相比以上三种滤波方法,其处理速度很慢,因此,一般建议取 d=5 用于实时图像处理,d=9 适合于非实时的图像领域

   注意 2)  sigmaColor 和 sigmaSpace 可取相同值,一般在 10 ~ 150 之间,小于 10,则没什么效果,大于 150,则效果太强烈,看起来明显“卡通化”

 

3  代码示例

3.1 OpenCV

  OpenCV 中的示例,通过逐渐增大像素邻域的大小 Size(w, h),将上述滤波过程动态化,非常形象的展示了邻域大小对滤波效果的影响

  代码摘抄

技术分享 View Code

3.2  滤波对比

  实际中,可直接调用以上四个滤波函数,代码如下:

技术分享
 1 #include "opencv2/imgproc/imgproc.hpp"
 2 #include "opencv2/highgui/highgui.hpp"
 3 
 4 using namespace std;
 5 using namespace cv;
 6 
 7 int main()
 8 {
 9     Mat src = imread("E:/smooth/bird.jpg");
10     if(src.empty())    return -1;
11 
12     namedWindow("original", CV_WINDOW_AUTOSIZE);
13     namedWindow("blur", CV_WINDOW_AUTOSIZE);
14     namedWindow("GaussianBlur", CV_WINDOW_AUTOSIZE);
15     namedWindow("medianBlur", CV_WINDOW_AUTOSIZE);
16     namedWindow("bilateralFilter", CV_WINDOW_AUTOSIZE);
17 
18     imshow("original", src);
19 
20     Mat dst;
21 
22     blur(src, dst, Size(3,3));
23     imshow("blur", dst);
24     
25     medianBlur(src,dst,3);
26     imshow("medianBlur",dst);
27     
28     GaussianBlur(src,dst,Size(3,3),0);
29     imshow("GaussianBlur",dst);
30 
31     bilateralFilter(src,dst,9,50,50);
32     imshow("bilateralFilter",dst);
33 
34     waitKey(0);
35     return 0;
36 }
技术分享

  四种滤波方法的效果图,如下所示:

  技术分享

参考资料

 <Digital Image Processing_3rd> chapter 3

 <Learning OpenCV_2nd>

 <OpenCV Tutorials> imgproc module - Smoothing Images

 

 

 
 

OpenCV 之 图像平滑

标签:

原文地址:http://www.cnblogs.com/destim/p/5472401.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!