标签:
题目链接:
CodeForces 617 E. XOR and Favorite Number
题目描述:
给出n个数,m次查询,每次查询在区间[l, r]里面有多少对(i, j),满足ai ^ ai+1 ^ ai+2 ^ ...... ^ aj-1 ^ aj == k
解题思路:
莫队算法,在线性复杂度内进行转移,问题关键在与如何进行状态转移,我们设定 sum[i] 为[1, i]区间内的异或和,对于区间[a, b]的异或和为sum[b] ^ sum[a-1]。如果区间 [a, b] 的异或和为k,则有sum[b] ^ sum[a-1] == k,由于异或的性质可以推论出:sum[b] ^ k == sum[a-1],sum[a-1] ^ k == sum[b]。
1 /** 2 ans要用LL, 3 num[]要在k的范围内扩大两倍 4 */ 5 #include <math.h> 6 #include <cstdio> 7 #include <cstring> 8 #include <iostream> 9 #include <algorithm> 10 using namespace std; 11 12 typedef __int64 LL; 13 const int maxn = 100010; 14 struct node 15 { 16 int l, r, id; 17 } q[maxn]; 18 LL ans[maxn]; 19 int b[maxn], num[maxn*20]; 20 int n, m, k, lb; 21 22 bool cmp (node x, node y) 23 { 24 if (x.l / lb == y.l / lb) 25 return x.r < y.r; 26 return x.l < y.l; 27 } 28 void solve () 29 { 30 int l, r; 31 LL tmp; 32 l = r = tmp = 0; 33 num[0] = 1; 34 35 for (int i=0; i<m; i++) 36 { 37 while (r < q[i].r) 38 { 39 r ++; 40 tmp += num[b[r]^k]; 41 num[b[r]] ++; 42 } 43 44 while (r > q[i].r) 45 { 46 num[b[r]] --; 47 tmp -= num[b[r]^k]; 48 r --; 49 } 50 51 while (l < q[i].l - 1) 52 { 53 num[b[l]] --; 54 tmp -= num[b[l] ^ k]; 55 l ++; 56 } 57 58 while (l > q[i].l - 1) 59 { 60 l --; 61 tmp += num[b[l] ^ k]; 62 num[b[l]] ++; 63 } 64 65 ans[q[i].id] = tmp; 66 } 67 } 68 69 int main () 70 { 71 while(scanf ("%d %d %d", &n, &m, &k) != EOF) 72 { 73 b[0] = 0; 74 lb = (int) sqrt (n); 75 76 for (int i=1; i<=n; i++) 77 { 78 scanf ("%d", &b[i]); 79 b[i] ^= b[i-1]; 80 } 81 82 for (int i=0; i<m; i++) 83 { 84 scanf ("%d %d", &q[i].l, &q[i].r); 85 q[i].id = i; 86 } 87 88 sort (q, q+m, cmp); 89 90 solve(); 91 92 for (int i=0; i<m; i++) 93 printf ("%I64d\n", ans[i]); 94 } 95 return 0; 96 }
CodeForces 617 E. XOR and Favorite Number
标签:
原文地址:http://www.cnblogs.com/alihenaixiao/p/5473194.html