码迷,mamicode.com
首页 > 其他好文 > 详细

行人检测 深度学习篇

时间:2016-05-10 07:08:40      阅读:2286      评论:0      收藏:0      [点我收藏+]

标签:

总体来说大部分浏览下就行。

樊恒,徐俊等.基于深度学习的人体行为识别[J].武汉大学学报,2016,41(4):492-497.

0 引言

目前研究行为识别的方法一般分为基于模型方法和基于相似性度量的方法,前者首先建立某种准则,然后从运动图像序列中提取目标的外形、运动等特征,根据所获得的特征信息,通过人工或半监督的方法来定义正常行为的数学模型。而基于相似度量的方法考虑到人体行为难定义、易发现的特点,避免显示定义人体行为的数学模型。其基本原理是自动从运动图像序列数据中学习各种人体行为,根据学习结果判断测试视频中的行为类型。
本文提出了一种基于深度信念网络(deep belief networks)的人体行为识别方法。

1 行为识别整体流程

流程图如下:
技术分享
左侧分支为模型训练,右侧模型为识别过程。

2 前景提取

目前,目标检测方法主要有背景减法、光流法以及时间差分法等。为了实现检测的自适应性和实时性,本文选择基于高斯混合模型的背景减法,该方法实现简单、运算速度快,同时能够适应背景变化。(时间差分法一般较难提取出完整的运动目标,在运动目标内部容易产生空洞。光流法的计算相对复杂,抗噪能力较差。)具体数学运算,博客里不再详述,下图是效果:
技术分享
(背景要不要这么单纯~~)

3 行为识别过程

行为识别过程中用到的深度学习相关内容这里不再详述,后面会有单独的博客的讨论。可先借鉴这篇http://blog.csdn.net/zouxy09/article/details/8781396
深度学习常用的模型有自动编码器、稀疏编码、深度信念网络等,本文选择DBNs模型。
在深度神经网络中,任意两个相邻的隐含层构成一个受限玻尔兹曼机(Restricted Boltzmann Machine RBM),深度信念网络是一个包含多个隐含层的概率模型,每一层从前一个隐含层获取高度相关的关联,可以看作多个RBM 的累加,每个低层的RBM 输出结果作为输入数据用于训练下一个RBM,通过贪婪学习得到一组RBM,这一组RBM 可以构成一个DSNs,如下图
技术分享
本文选择贪婪的逐层训练算法。在贪婪学习的过程中,采用了wake-sleep算法思想。学习过程如下:
技术分享

4 实验分析

本文对比了不同的隐含层数,隐含层单元数及迭代次数与训练误差的关系。
同时与其他文献对比得到的结果显示较好。

芮挺等 基于深度卷积神经网络的行人检测 计算机工程与应用 2015

通过本文可以熟悉普通卷积神经网络应用的过程

0 引言

与hog+svm或adaboost对比,得到的更好的结果

1 卷积神经网络结构与特点

卷积神经网络的讲解,下面这篇文章讲的比较好
http://www.36dsj.com/archives/24006

2 行人检测卷积神经网络结构

经典卷积神经网络不能有效完成行人检测任务,网络深度、卷积核大小、最终提取特征维数,是影响结果的主要因素。因此需要针对行人检测问题的具体特点,对卷积神经网络的结构进行重新的设计。主要考虑一下问题:
1. 卷积核的影响。卷积核是卷积神经网络模型中最具特性的部分,可以理解为生物视觉中感受野的模型化表示。它的性质直接决定了特征提取的好坏、网络收敛的速度等。卷积核的大小决定了感受野的大小,感受野过大,提取的特征超出卷积核的表达范围,而感受野过小,则无法提取有效的局部特征。因此,卷积核大小对整个网络的性能有着至关重要的影响。
2. 通过增加网络的层数,其特征信息表达能力逐步增强,但层数过多也会致使网络结构过于复杂,训练时间增加,易出现过拟合现象
3. 分类器输入特征维数的影响
基于上述分析,对行人检测卷积神经网络进行了重新设计,并通过实验对上述思想及网络结构参数进行了验证。最终确定深度卷积神经网络结构共分7 层,卷积核大小为9x9,隐含层输出特征维数为360 维左右。

3 实验对比总结

还是老样子,实验结果很好,方法很好……

张 阳 基于深信度网络分类算法的行人检测方法[J] 计算机应用研究 2016,33(02)

行人检测 深度学习篇

标签:

原文地址:http://blog.csdn.net/bea_tree/article/details/51357448

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!