标签:
题意:定义"beautiful number"为一个数n能整除所有数位上非0的数字
分析:即n是数位所有数字的最小公倍数的倍数。LCM(1到9)=2520。n满足是2520的约数的倍数。dp[len][val][lcm]一维为数的位数,一维为%2520的值(保存原数不可能,也没必要,2520是可行的最小公倍数最大的一个),一维为当前数位的lcm,判断满足的条件是val%lcm==0。这题离散化2520的约数,否则空间开不下。
#include <bits/stdc++.h> typedef long long ll; ll dp[20][2520][50]; int digit[20]; int id[2521]; int tot; int GCD(int a, int b) { return b ? GCD (b, a % b) : a; } int LCM(int a, int b) { return a / GCD (a, b) * b; } void init_LCM() { tot = 0; for (int i=1; i<=2520; ++i) { if (2520 % i == 0) { id[i] = ++tot; } } } ll DFS(int pos, int val, int lcm, bool limit) { if (pos == -1) { return val % lcm == 0; } ll &now = dp[pos][val][id[lcm]]; if (!limit && now != -1) { return now; } int d = limit ? digit[pos] : 9; ll ret = 0; for (int i=0; i<=d; ++i) { int tval = (val * 10 + i) % 2520; int tlcm = i ? lcm / GCD (lcm, i) * i : lcm; ret += DFS (pos - 1, tval, tlcm, limit && i == d); } if (!limit) { now = ret; } return ret; } ll solve(ll x) { int len = 0; if (x == 0) { digit[len++] = 0; } else { while (x) { digit[len++] = x % 10; x /= 10; } } return DFS (len - 1, 0, 1, true); } int main() { init_LCM (); memset (dp, -1, sizeof (dp)); int T; scanf ("%d", &T); while (T--) { ll l, r; std::cin >> l >> r; std::cout << solve (r) - solve (l - 1) << ‘\n‘; } return 0; }
标签:
原文地址:http://www.cnblogs.com/Running-Time/p/5476984.html